
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
Valentin Brimkov, Reinhard Klette, "Border and SurfaceTracing  Theoretical Foundations," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 30, no. 4, pp. 577590, April, 2008.  
BibTex  x  
@article{ 10.1109/TPAMI.2007.70725, author = {Valentin Brimkov and Reinhard Klette}, title = {Border and SurfaceTracing  Theoretical Foundations}, journal ={IEEE Transactions on Pattern Analysis and Machine Intelligence}, volume = {30}, number = {4}, issn = {01628828}, year = {2008}, pages = {577590}, doi = {http://doi.ieeecomputersociety.org/10.1109/TPAMI.2007.70725}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Pattern Analysis and Machine Intelligence TI  Border and SurfaceTracing  Theoretical Foundations IS  4 SN  01628828 SP577 EP590 EPD  577590 A1  Valentin Brimkov, A1  Reinhard Klette, PY  2008 KW  digital geometry KW  digital topology KW  discrete dimension KW  digital manifold KW  digital curve KW  digital hypersurface KW  good pair VL  30 JA  IEEE Transactions on Pattern Analysis and Machine Intelligence ER   
[1] J.C. Alexander and A.I. Thaler, “The Boundary Count of Digital Pictures,” J. ACM, vol. 18, pp. 105112, 1971.
[2] P. Alexandroff and H. Hopf, Topologie—Erster Band. Julius Springer, 1935.
[3] E. Andres, R. Acharya, and C. Sibata, “Discrete Analytical Hyperplanes,” Graphical Models Image Processing, vol. 59, pp. 302309, 1997.
[4] G. Bertrand and R. Malgouyres, “Some Topological Properties of Surfaces in ${\hbox{\rlap{Z}\kern 2.0pt{\hbox{Z}}}}^{3}$ ,” J. Math. Imaging Vision, vol. 11, pp. 207221, 1999.
[5] V.E. Brimkov, E. Andres, and R.P. Barneva, “Object Discretizations in Higher Dimensions,” Pattern Recognition Letters, vol. 23, pp. 623636, 2002.
[6] V.E. Brimkov and R.P. Barneva, “Plane Digitization and Related Combinatorial Problems,” Discrete Applied Math., vol. 147, pp. 169186, 2005.
[7] V.E. Brimkov, D. Coeurjolly, and R. Klette, “Digital Planarity—A Review,” Discrete Applied Math., vol. 155, pp. 468495, 2007.
[8] V.E. Brimkov and R. Klette, “Curves, Hypersurfaces, and Good Pairs of Adjacency Relations,” Proc. Int'l Workshop Combinatorial Image Analysis, pp. 270284, 2004.
[9] L. Chen, Discrete Surfaces and Manifolds: A Theory of DigitalDiscrete Geometry and Topology. Scientific and Practical Computing, 2004.
[10] L. Chen, “Gradually Varied Surfaces and Gradually Varied Functions,” Technical Report CITRTR 156, Univ. of Auckland, May 2005.
[11] L. Chen, D.H. Cooley, and J. Zhang, “The Equivalence between Two Definitions of Digital Surfaces,” Information Sciences, vol. 115, pp. 201220, 1999.
[12] L. Chen and J. Zhang, “Digital Manifolds: An Intuitive Definition and Some Properties,” Proc. ACM/SIGGRAPH Symp. Solid Modeling Applications, pp. 459460, 1993.
[13] D. CohenOr, A. Kaufman, and T.Y. Kong, “On the Soundness of Surface Voxelizations,” Topological Algorithms for Digital Image Processing, T.Y. Kong and A. Rosenfeld, eds., pp. 181204, Elsevier, 1996.
[14] M. Couprie and G. Bertrand, “Tessellations by Connection,” Pattern Recognition Letters, vol. 23, pp. 637647, 2002.
[15] X. Daragon, M. Couprie, and G. Bertrand, “Discrete Surfaces and Frontier Orders,” J. Math. Imaging and Vision, vol. 23, no. 3, pp.379399, 2005.
[16] E.E. Domínguez and A.R. Francés, “An Axiomatic Approach to Digital Topology,” Lecture Notes in Computer Scince, vol. 2243, pp.316, 2001.
[17] R.O. Duda, P.E. Hart, and J.H. Munson, “GraphicalDataProcessing Research Study and Experimental Investigation,” Technical Report ECOM0190126, Stanford Research Inst., Mar. 1967.
[18] U. Eckhardt and L. Latecki, “Topologies for the Digital Spaces ${\hbox{\rlap{Z}\kern 2.0pt{\hbox{Z}}}}^{2}$ and ${\hbox{\rlap{Z}\kern 2.0pt{\hbox{Z}}}}^{3}$ ,” Computer Vision Image Understanding, vol. 90, pp. 295312, 2003.
[19] J. Françon, “Discrete Combinatorial Surfaces,” Graphical Models Image Processing, vol. 57, pp. 2026, 1995.
[20] G.T. Herman, “Boundaries in Digital Spaces: Basic Theory,” Topological Algorithms for Digital Image Processing, T.Y. Kong and A. Rosenfeld, eds., pp. 233261, Elsevier, 1996.
[21] Y. Kenmochi, A. Imiya, and A. Ichikawa, “Discrete Combinatorial Geometry,” Pattern Recognition, vol. 30, pp. 17191728, 1997.
[22] C.E. Kim, “ThreeDimensional Digital Line Segments,” IEEE Trans. Pattern Analysis Machine Intelligence, vol. 5, pp. 231234, 1983.
[23] G. Klette, “Branch Voxels and Junctions in 3D Skeletons,” Proc. Int'l Workshop Combinatorial Image Analysis, pp. 3444, 2006.
[24] G. Klette, “Topologic, Geometric, or GraphTheoretic Properties of Skeletal Curves,” PhD dissertation, Groningen Univ., 2007.
[25] R. Klette, “Algorithms for Picture Analysis, Lecture 25,” www. citr.auckland.ac.nz/~rklette/Books/ MK2004Algorithms.htm, Mar. 2005.
[26] R. Klette and A. Rosenfeld, Digital Geometry—Geometric Methods for Digital Picture Analysis. Morgan Kaufmann, 2004.
[27] R. Klette and H.J. Sun, “Digital Planar Segment Based Polyhedrization for Surface Area Estimation,” Visual Form, C. Arcelli, L.P.Cordella, and G. Sanniti di Baja, eds., pp. 356366, Springer, 2001.
[28] T.Y. Kong, “Digital Topology,” Foundations of Image Understanding, L.S. Davis, ed., pp. 3371, Kluwer Academic, 2001.
[29] T.Y. Kong, “Topological Adjacency Relations on ${\hbox{\rlap{Z}\kern 2.0pt{\hbox{Z}}}}^{n}$ ,” Theoretical Computer Science, vol. 283, pp. 328, 2002.
[30] T.Y. Kong, A.W. Roscoe, and A. Rosenfeld, “Concepts of Digital Topology,” Topology and Its Applications, vol. 46, pp. 219262, 1992.
[31] R. Kopperman, P.R. Meyer, and R. Wilson, “A Jordan Surface Theorem for ThreeDimensional Digital Spaces,” Discrete Computational Geometry, vol. 6, pp. 155161, 1991.
[32] V.A. Kovalevsky, “Finite Topology as Applied to Image Analysis,” Computer Vision, Graphics, and Image Processing, vol. 46, no. 2, pp. 141161, 1989.
[33] V. Kovalevsky, “Multidimensional Cell Lists for Investigating 3Manifolds,” Discrete Applied Math., vol. 125, pp. 2544, 2003.
[34] J.O. Lachaud and A. Montanvert, “Continuous Analogs of Digital Boundaries: A Topological Approach to Isosurfaces,” Graphical Models, vol. 62, pp. 129164, 2000.
[35] L.J. Latecki, Discrete Representations of Spatial Objects in Computer Vision. Kluwer Academic Publisher, 1998.
[36] R. Malgouyres, “A Definition of Surfaces of ${\hbox{\rlap{Z}\kern 2.0pt{\hbox{Z}}}}^{3}$ : A New 3D Discrete Jordan Theorem,” Theoretical Computer Science, vol. 186, pp. 141, 1997.
[37] K. Menger, Kurventheorie. Teubner, 1932.
[38] D.G. Morgenthaler and A. Rosenfeld, “Surfaces in ThreeDimensional Digital Images,” Information Control, vol. 51, pp. 227247, 1981.
[39] J.P. Mylopoulos and T. Pavlidis, “On the Topological Properties of Quantized Spaces, I. The Notion of Dimension,” J. ACM, vol. 18, pp. 239246, 1971.
[40] J. Ohser and K. Schladitz, Image Processing and Analysis. Clarendon Press, 2006.
[41] J.P. Reveillès, Géométrie Discrète, Calcul en Nombres Entiers et Algorithmique, Thèse d'état, Université Louis Pasteur, 1991.
[42] A. Rosenfeld, “Adjacency in Digital Pictures,” Information and Control, vol. 26, pp. 2433, 1974.
[43] A. Rosenfeld, “Compact Figures in Digital Pictures,” IEEE Trans. Systems, Man, and Cybernetics, vol. 4, pp. 221223, 1974.
[44] A. Rosenfeld, T.Y. Kong, and A.Y. Wu, “Digital Surfaces,” Computer Vision, Graphics, and Image Processing: Graphical Models Image Processing, vol. 53, pp. 305312, 1991.
[45] A. Rosenfeld and J.L. Pfaltz, “Sequential Operations in Digital Picture Processing,” J. ACM, vol. 13, pp. 471494, 1966.
[46] M. Siguera, L.J. Latecki, and J. Gallier, “Making 3D Binary Digital Images WellComposed,” Proc. Vision Geometry, pp. 150163, 2005.
[47] G. Tourlakis, “Homological Methods for the Classification of Discrete Euclidean Structures,” SIAM J. Applied Math., vol. 33, pp.5154, 1977.
[48] G. Tourlakis and J. Mylopoulos, “Some Results in Computational Topology,” J. ACM, vol. 20, pp. 430455, 1973.
[49] J.K. Udupa, “Connected, Oriented, Closed Boundaries in Digital Spaces: Theory and Algorithms,” Topological Algorithms for Digital Image Processing, T.Y. Kong and A. Rosenfeld, eds., pp.205231, Elsevier, 1996.
[50] P. Urysohn, “Über die allgemeinen Cantorischen Kurven,” Proc. Ann. Meeting, Deutsche Mathematiker Vereinigung, 1923.
[51] D.J.A. Welsh, Matroid Theory. Academic Press, 1976.
[52] F. Wyse, “A Special Topology for the Integers,” Am. Math. Monthly, vol. 77, p. 1119, 1970.