
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
John Melonakos, Eric Pichon, Sigurd Angenent, Allen Tannenbaum, "Finsler Active Contours," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 30, no. 3, pp. 412423, March, 2008.  
BibTex  x  
@article{ 10.1109/TPAMI.2007.70713, author = {John Melonakos and Eric Pichon and Sigurd Angenent and Allen Tannenbaum}, title = {Finsler Active Contours}, journal ={IEEE Transactions on Pattern Analysis and Machine Intelligence}, volume = {30}, number = {3}, issn = {01628828}, year = {2008}, pages = {412423}, doi = {http://doi.ieeecomputersociety.org/10.1109/TPAMI.2007.70713}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Pattern Analysis and Machine Intelligence TI  Finsler Active Contours IS  3 SN  01628828 SP412 EP423 EPD  412423 A1  John Melonakos, A1  Eric Pichon, A1  Sigurd Angenent, A1  Allen Tannenbaum, PY  2008 KW  Directional segmentation KW  Finsler metric KW  dynamic programming KW  active contours KW  diffusion weighted imagery VL  30 JA  IEEE Transactions on Pattern Analysis and Machine Intelligence ER   
[1] S. Kichenassamy, A. Kumar, P. Olver, A. Tannenbaum, and A. Yezzi, “Conformal Curvature Flows: From Phase Transitions to Active Vision,” Archive of Rational Mechanics and Analysis, vol. 134, no. 3, pp. 275301, 1996.
[2] V. Caselles, R. Kimmel, and G. Sapiro, “Geodesic Active Contours,” Int'l J. Computer Vision, vol. 22, no. 11, pp. 6179, 1997.
[3] D. Bao, S.S. Chern, and Z. Shen, Introduction to RiemannFinsler Geometry. Springer, 2000.
[4] M. Spivak, Introduction to Differential Geometry, vol. 2. Publish of Perish, 1974.
[5] S. Angenent and M. Gurtin, “Anisotropic Motion of a Phase Interface. WellPosedness of the Initial Value Problem and Qualitative Properties of the Interface,” J. Reine und Angewandte Mathematik, vol. 446, pp. 147, 1994.
[6] M. Gage, “Evolving Plane Curves by Curvature in Relative Geometries,” Duke J. Math., vol. 72, pp. 441466, 1993.
[7] E. Pichon, G. Sapiro, and A. Tannenbaum, Segmentation of Diffusion Tensor Imagery, “, Directions in Math. Systems Theory and Optimization,” Lecture Notes in Computer Science, no. 286, pp.239247, 2003.
[8] E. Pichon, C. Westin, and A. Tannenbaum, “HamiltonJacobiBellman Approach to HighAngular Resolution Diffusion Tractography,” Proc. Int'l Conf. Medical Image Computing and ComputerAssisted Intervention, pp. 180187, 2005.
[9] E. Pichon and A. Tannenbaum, “Pattern Detection and Image Segmentation with Anisotropic Conformal Factor,” Proc. Int'l Conf. Image Processing, 2005.
[10] G. Bellettini, “Anisotropic and Crystalline Mean Curvature Flow,” A Sampler of RiemannFinsler Geometry, pp.4982, Cambridge Univ. Press, 2004.
[11] R. Kimmel and A. Bruckstein, “Regularized ZeroCrossings as Optimal Edge Detectors,” Int'l J. Computer Vision, vol. 53, no. 3, pp.225243, 2003.
[12] A. Vasilevsky and K. Siddiqi, “Flux Maximizing Geometric Flows,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 24, no. 12, pp. 15651579, Dec. 2002.
[13] Y. Boykov, V. Kolmorgorov, D. Cremers, and A. Delong, “An Integral Solution to Surface Evolution Pdes via GeoCuts,” Proc. IEEE European Conf. Computer Vision, pp. 409422, 2006.
[14] V. Kolmorgorov and Y. Boykov, “What Metrics Can Be Approximated by GeoCuts or Global Optimization of Length/Area and Flux,” Proc. IEEE Int'l Conf. Computer Vision, 2003.
[15] Y. Boykov and V. Kolmorgorov, “Computing Geodesics and Minimal Surfaces via Graph Cuts,” Proc. IEEE Int'l Conf. Computer Vision, pp. 2633, 2003.
[16] J.M. Morel and S. Solimini, Variational Methods for Image Segmentation. Birkhauser, 1994.
[17] S. Osher and R. Fedkiw, Level Set Methods and Dynamic Implicit Surfaces. Springer, 2003.
[18] J. Sethian, Level Set Methods and Fast Marching Methods. Cambridge Univ. Press, 1999.
[19] G. Sapiro, Geometric Partial Differential Equations and Image Analysis. Cambridge Univ. Press, 2001.
[20] E. Mortensen, B. Morse, W. Barrett, and J. Udupa, “Adaptive Boundary Detection Using LiveWire TwoDimensional Dynamic Programming,” IEEE Proc. Computers in Cardiology, pp. 635638, 1992.
[21] J.N. Tsitsiklis, “Efficient Algorithms for Globally Optimal Trajectories,” IEEE Trans. Automatic Control, vol. 50, no. 9, pp. 15281538, 1995.
[22] S. Angenent, “Parabolic Equations for Curves on Surfaces. II. Intersections, BlowUp and Generalized Solutions,” Ann. Math. (2), vol. 133, no. 1, pp. 171215, 1991.
[23] J.A. Oaks, “Singularities and SelfIntersections of Curves Evolving on Surfaces,” Indiana Univ. Math. J., vol. 43, no. 3, pp. 959981, 1994.
[24] M. DoCarmo, Riemannian Geometry. Springer, 2003.
[25] W. Fleming and H. Soner, Controlled Markov Processes and Viscosity Solutions. Springer, 2003.
[26] H. Soner, “Dynamic Programming and Viscosity Solutions,” Proc. Ann. AMS Meeting, 1999.
[27] J. Sethian and A. Vladimirsky, “Ordered Upwind Methods for Static HamiltonJacobi Equations: Theory and Applications,” SIAM J. Numerical Analysis, vol. 41, no. 1, pp. 325363, 2003.
[28] C. Kao, S. Osher, and Y. Tsai, “Fast Sweeping Methods for Static HamiltonJacobi Equations,” Technical Report 0375, CAM, Univ. of California, Los Angeles, 2003.
[29] C. Kao, S. Osher, and J. Qian, “LaxFriedrichs Sweeping Scheme for Static HamiltonJacobi Equations,” J. Computational Physics, vol. 196, no. 1, pp. 367391, May 2004.
[30] M. Gage and R. Hamilton, “The Heat Equation Shrinking Convex Plane Curves,” J. Differential Geometry, vol. 23, pp. 6996, 1986.
[31] M. Grayson, “The Heat Equation Shrinks Embedded Plane Curves to Round Points,” J. Differential Geometry, vol. 26, pp. 285314, 1987.
[32] P. Basser, J. Mattiello, and D. LeBihan, “MR Diffusion Tensor Spectroscopy and Imaging,” Biophysical J., vol. 66, pp. 259267, 1994.
[33] S. Mori, B. Crain, V. Chacko, and P. van Zijl, “ThreeDimensional Tracking of Axonal Projections in the Brain by Magnetic Resonance Imaging,” Annals of Neurology, vol. 45, no. 2, pp. 265269, Feb. 1999.
[34] T. Conturo, N. Lori, T. Cull, E. Akbudak, A. Snyder, J. Shimony, R. McKinstry, H. Burton, and M. Raichle, “Tracking Neuronal Fiber Pathways in the Living Human Brain,” Proc. Nat'l Academy of Sciences, pp. 1042210427, Aug. 1999.
[35] C.F. Westin, S.E. Maier, B. Khidhir, P. Everett, F.A. Jolesz, and R. Kikinis, “Image Processing for Diffusion Tensor Magnetic Resonance Imaging,” Proc. Int'l Conf. Medical Image Computing and ComputerAssisted Intervention, pp. 441452, 1999.
[36] P. Basser, S. Pajevic, C. Pierpaoli, J. Duda, and A. Aldroubi, “In Vivo Fiber Tractography Using DTMRI Data,” Magnetic Resonance in Medicine, vol. 44, pp. 625632, 2000.
[37] P. Hagmann, T.G. Reese, W.Y.I. Tseng, R. Meuli, J.P. Thiran, and V.J. Wedeen, “Diffusion Spectrum Imaging Tractography in Complex Cerebral White Matter: An Investigation of the Centrum Semiovale,” Proc. Int'l Soc. Magnetic Resonance in Medicine, 2004.
[38] J.S. Campbell, “Diffusion Imaging of White Matter Fibre Tracts,” PhD dissertation, McGill Univ., 2004.
[39] L.C. Young, Calculus of Variations and Optimal Control Theory. W.B.Saunders, 1969.
[40] L. Ibanez, W. Schroeder, L. Ng, and J. Cates, “The ITK Software Guide. Kitware,” technical report, http://www.itk.orgItkSoft wareGuide.pdf, 2003.