
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
Hanan G. Ayad, Mohamed S. Kamel, "Cumulative Voting Consensus Method for Partitions with Variable Number of Clusters," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 30, no. 1, pp. 160173, January, 2008.  
BibTex  x  
@article{ 10.1109/TPAMI.2007.1138, author = {Hanan G. Ayad and Mohamed S. Kamel}, title = {Cumulative Voting Consensus Method for Partitions with Variable Number of Clusters}, journal ={IEEE Transactions on Pattern Analysis and Machine Intelligence}, volume = {30}, number = {1}, issn = {01628828}, year = {2008}, pages = {160173}, doi = {http://doi.ieeecomputersociety.org/10.1109/TPAMI.2007.1138}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Pattern Analysis and Machine Intelligence TI  Cumulative Voting Consensus Method for Partitions with Variable Number of Clusters IS  1 SN  01628828 SP160 EP173 EPD  160173 A1  Hanan G. Ayad, A1  Mohamed S. Kamel, PY  2008 KW  Cluster Analysis KW  Consensus Clustering KW  Ensemble Methods KW  Voting VL  30 JA  IEEE Transactions on Pattern Analysis and Machine Intelligence ER   
[1] R. Duda, P. Hart, and D. Stork, Pattern Classification. John Wiley & Sons, 2001.
[2] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning: Data Mining, Inference and Prediction. Springer, 2001.
[3] A.K. Jain and R.C. Dubes, Algorithms for Clustering Data. Prentice Hall, 1988.
[4] A. Jain, M. Murty, and P. Flynn, “Data Clustering: A Review,” ACM Computing Surveys, vol. 31, no. 3, pp. 264323, Sept. 1999.
[5] E.D. Cristofor, “InformationTheoretic Methods in Clustering,” PhD dissertation, Univ. of Massachusetts, 2002.
[6] B.G. Mirkin, “On the Problem of Reconciling Partitions,” Quantitative Sociology: Int'l Perspectives on Math. and Statistical Modeling, H.M. Blalock, A. Aganbegian, F.M. Borodkin, R.Boudon, and V. Capecchi, eds., pp. 441449, 1975.
[7] S. Régnier, “Etudes sur le polyèdre des Partitions,” Mathématiques et Sciences Humaines, vol. 82, pp. 85111, 1983.
[8] P.A.L. Hubert, “Comparing Partitions,” J. Classification, vol. 2, pp.193218, 1985.
[9] W.H.E. Day, “Foreword: Comparison and Consensus of Classifications,” J. Classification, vol. 3, pp. 183185, 1986.
[10] J.P. Barthélemy and B. Leclerc, “The Median Procedure for Partitions,” Partitioning Data Sets, vol. 19, pp. 333, 1995.
[11] W.H.E. Day and F.R. McMorris, Axiomatic Consensus Theory in Group Choice and Biomathematics, vol. 39, 2003.
[12] B. Leclerc, “Efficient and Binary Consensus Functions on Transitively Valued Relations,” Math. Social Sciences, vol. 8, pp.4561, 1984.
[13] D.A. Neumann and V. Norton, “Clustering and Isolation in the Consensus Problem for Partitions,” J. Classification, vol. 3, no. 2, pp. 281297, 1986.
[14] B. Monjardet, “Arrowian Characterization of Latticial Federation Consensus Functions,” Math. Social Sciences, vol. 20, pp. 5171, 1990.
[15] S. Régnier, “Sur Quelques Aspect Mathématique des Problèmes de Classification Automatique,” Mathématiques et Sciences Humaines, vol. 82, pp. 1329, 1983.
[16] J.P. Barthélemy and B. Monjardet, “The Median Procedure in Cluster Analysis and Social Choice Theory,” Math. Social Sciences, vol. 1, pp. 235268, 1981.
[17] A. Strehl and J. Ghosh, “Cluster Ensembles—A Knowledge Reuse Framework for Combining Multiple Partitions,” J. Machine Learning Research, vol. 3, pp. 583617, Dec. 2002.
[18] A. Fred, “Finding Consistent Clusters in Data Partitions,” Proc. Third Int'l Workshop Multiple Classifier Systems, J. Kittler and F.Roli, eds., pp. 309318, 2001.
[19] A. Fred and A. Jain, “Data Clustering Using Evidence Accumulation,” Proc. 16th Int'l Conf. Pattern Recognition, vol. 4, pp. 276280, Aug. 2002.
[20] A. Fred and A. Jain, “Evidence Accumulation Clustering Based on the KMeans Algorithm,” Structural, Syntactic, and Statistical Pattern Recognition, T. Caelli, A. Amin, R. Duin, M. Kamel, and D. de Ridder, eds., pp. 442451, 2002.
[21] A. Fred and A. Jain, “Combining Multiple Clusterings Using Evidence Accumulation,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 27, no. 6, pp. 835850, June 2005.
[22] S. Dudoit and J. Fridlyand, “Bagging to Improve the Accuracy of a Clustering Procedure,” Bioinformatics, vol. 19, no. 9, pp. 10901099, 2003.
[23] B. Fischer and J. Buhmann, “Bagging for PathBased Clustering,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 25, no. 11, pp. 14111415, Nov. 2003.
[24] H. Ayad and M. Kamel, “Finding Natural Clusters Using MultiClusterer Combiner Based on Shared Nearest Neighbors,” Proc. Fourth Int'l Workshop Multiple Classifier Systems, pp. 166175, 2003.
[25] H. Ayad, O. Basir, and M. Kamel, “A Probabilistic Model Using Information Theoretic Measures for Cluster Ensembles,” Proc. Fifth Int'l Workshop Multiple Classifier Systems, pp. 144153, 2004.
[26] H. Ayad and M. Kamel, “ClusterBased Cumulative Ensembles,” Proc. Sixth Int'l Workshop Multiple Classifier Systems, pp. 236245, 2005.
[27] L.I. Kuncheva and S. Hadjitodorov, “Using Diversity in Cluster Ensembles,” Proc. IEEE Int'l Conf. Systems, Man, and Cybernetics, pp. 12141219, 2004.
[28] A. Topchy, A. Jain, and W. Punch, “A Mixture Model of Clustering Ensembles,” Proc. SIAM Conf. Data Mining, pp. 379390, Apr. 2004.
[29] A. Topchy, A. Jain, and W. Punch, “Combining Multiple Weak Clusterings,” Proc. IEEE Int'l Conf. Data Mining, pp. 331338, Nov. 2003.
[30] B. Minaei, A. Topchy, and W. Punch, “Ensembles of Partitions via Data Resampling,” Proc. IEEE Int'l Conf. Information Technology: Coding and Computing, vol. 2, pp. 188192, Apr. 2004.
[31] A. Topchy, A. Jain, and W. Punch, “Clustering Ensembles: Models of Consensus and Weak Partitions,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 27, no. 12, pp. 18661881, Dec. 2005.
[32] J. Ghosh, “Multiclassifier Systems: Back to the Future,” Proc. Third Int'l Workshop Multiple Classifier Systems, F. Roli and J. Kittler, eds., pp. 115, June 2002.
[33] L. Breiman, “Bagging Predictors,” Machine Learning J., vol. 26, no. 2, pp. 123140, 1996.
[34] Y. Freund and R.E. Schapire, “A DecisionTheoretic Generalization of OnLine and an Application to Boosting,” J. Computer and System Sciences, vol. 55, no. 1, pp. 119139, 1995.
[35] L. Breiman, “Random Forests,” Machine Learning J., vol. 45, pp. 532, 2001.
[36] T. Ho, “The Random Subspace Method for Constructing Decision Forests,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 20, pp. 832844, 1998.
[37] J. Friedman, T. Hastie, and R. Tibshirani, “Additive Logistic Regression: A Statistical View of Boosting,” The Annals of Statistics, vol. 28, pp. 337407, 2000.
[38] L.I. Kuncheva, Combining Pattern Classifiers: Methods and Algorithms. WileyInterscience, 2004.
[39] S. Merugu and J. Ghosh, “PrivacyPreserving Distributed Clustering Using Generative Models,” Proc. IEEE Int'l Conf. Data Mining, pp. 211218, Nov. 2003.
[40] N. Tishby, F. Pereira, and W. Bialek, “The Information Bottleneck Method,” Proc. 37th Ann. Allerton Conf. Comm., Control, and Computing, pp. 368377, 1999.
[41] N. Slonim and N. Tishby, “Agglomerative Information Bottleneck,” Proc. Neural Information Processing Systems Conf., pp. 617623, 1999.
[42] P. Arabie and S.A. Boorman, “Multidimensional Scaling of Measures of Distances between Partitions,” J. Math. Psychology, vol. 17, pp. 3163, 1973.
[43] W. Day, “The Complexity of Computing Metric Distances between Partitions,” Math. Social Sciences, vol. 1, pp. 269287, 1981.
[44] B. Mirkin, “Reinterpreting the Category Utility Function,” Machine Learning, vol. 45, no. 2, pp. 219228, 2001.
[45] A. Topchy, M. Law, A. Jain, and A. Fred, “Analysis of Consensus Partition in Clustering Ensemble,” Proc. IEEE Int'l Conf. Data Mining, pp. 225232, 2004.
[46] A.D. Gordon and M. Vichi, “Fuzzy Partition Models for Fitting a Set of Partitions,” Psychometrika, vol. 66, no. 2, pp. 229248, 2001.
[47] E. Dimitriadou, A. Weingessel, and K. Hornik, “A Combination Scheme for Fuzzy Clustering,” Int'l J. Pattern Recognition and Artificial Intelligence, vol. 16, no. 7, pp. 901912, 2002.
[48] T.M. Cover and J.A. Thomas, Elements of Information Theory. John Wiley & Sons, 1991.
[49] D. Gondek and T. Hofmann, “NonRedundant Clustering with Conditional Ensembles,” Proc. ACM SIGKDD Int'l Conf. Knowledge Discovery and Data Mining, 2005.
[50] I.S. Dhillon, S. Mallela, and R. Kumar, “A Divisive InformationTheoretic Feature Clustering Algorithm for Text Classification,” J.Machine Learning Research, vol. 3, pp. 12651287, 2003.
[51] J. Lin, “Divergence Measures Based on the Shannon Entropy,” IEEE Trans. Information Theory, vol. 37, no. 1, pp. 145151, 1995.
[52] W.H. Wolberg and O. Mangasarian, “Multisurface Method of Pattern Separation for Medical Diagnosis Applied to Breast Cytology,” Proc. Nat'l Academy of Sciences, vol. 87, pp. 91939196, Dec. 1990.