The Community for Technology Leaders
RSS Icon
Subscribe
Issue No.01 - January (2008 vol.30)
pp: 105-119
ABSTRACT
This work presents a framework for automatic feature extraction from images using stochastic geometry. Features in images are modeled as realizations of a spatial point process of geometrical shapes. This framework allows the incorporation of a priori knowledge on the spatial repartition of features. More specifically, we present a model based on the superposition of a process of segments and a process of rectangles. The former is dedicated to the detection of linear networks of discontinuities, while the latter aims at segmenting homogeneous areas. An energy is defined, favoring connections of segments, alignments of rectangles, as well as a relevant interaction between both types of objects. The estimation is performed by minimizing the energy using a simulated annealing algorithm.The proposed model is applied to the analysis of Digital Elevation Models (DEMs). These images are raster data representing the altimetry of a dense urban area. We present results on real data provided by the IGN (French National Geographic Institute) consisting in low quality DEMs of various types.
INDEX TERMS
Image processing, Poisson point process, stochastic geometry, dense urban area, Digital Elevation Models, land register, building detection, MCMC, RJMCMC, simulated annealing
CITATION
Mathias Ortner, Xavier Descombe, Josiane Zerubia, "A Marked Point Process of Rectangles and Segments for Automatic Analysis of Digital Elevation Models", IEEE Transactions on Pattern Analysis & Machine Intelligence, vol.30, no. 1, pp. 105-119, January 2008, doi:10.1109/TPAMI.2007.1159
REFERENCES
[1] A. Fischer, T.H. Kolbe, F. Lang, A.B. Cremers, W. Förstner, L. Plümer, and V. Steinhage, “Extracting Buildings from Aerial Images Using Hierarchical Aggregation in 2D and 3D,” Computer Vision and Image Understanding, vol. 72, no. 2, pp. 185-203, 1998.
[2] H. Mayer, “Automatic Object Extraction from Aerial Imagery—A Survey Focusing on Buildings,” Computer Vision and Image Understanding, vol. 74, no. 2, pp. 138-149, 1999.
[3] H. Jibrini, “Reconstruction Automatique des Bâtiments en Modèles Polyèdriques 3D à Partir de Donnèes Cadastrales Vectorisèes 2D et d'un Couple d'images Aèriennes à Haute Rèsolution,” PhD dissertation, Ecole Nationale Superieure des Telecommunications de Paris (ENST), Paris, 2002.
[4] M. Fradkin, M. Roux, and H. Maître, “Building Detection from Multiple Views,” Proc. ISPRS Conf. Automatic Extraction of GIS Objects from Digital Imagery, 1999.
[5] M. Fradkin, M. Roux, H. Maître, and U. Leloglu, “Surface Reconstruction from Multiple Aerial Images in Dense Urban Areas,” Proc. IEEE Int'l Conf. Computer Vision and Pattern Recognition, vol. 1, pp. 262-267, June 1999.
[6] M. Ortner, X. Descombes, and J. Zerubia, “Building Outline Extraction from Digital Elevation Models Using Marked Point Processes,” Int'l J. Computer Vision, 2006.
[7] M. Ortner, X. Descombes, and J. Zerubia, “Point Processes of Segments and Rectangles for Building Extraction from Digital Elevation Models,” Proc. IEEE Int'l Conf. Acoustics, Speech, and Signal Processing, May 2006.
[8] J. Besag, “On the Statistical Analysis of Dirty Pictures,” J. Royal Statistic Soc., vol. B, no. 68, pp. 259-302, 1986.
[9] S. Geman and D. Geman, “Stochastic Relaxation, Gibbs Distributions and the Bayesian Restoration of Images,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 6, no. 6, pp. 721-741, Nov. 1984.
[10] O. Viveros-Cancino, “Analyse du Milieu Urbain par Une Approche de Fusion de Donnèes Satellitaires Optiques et Radar,” PhD dissertation, Univ. of Nice-Sophia Antipolis, 2003 (in French).
[11] A. Baddeley and M.N.M. van Lieshout, “Stochastic Geometry Models in High-Level Vision,” Statistics and Images, vol. 1, pp. 233-258, 1993.
[12] H. Rue and M. Hurn, “Bayesian Object Identification,” Biometrika, vol. 3, pp. 649-660, 1999.
[13] H. Rue and A.R. Syverseen, “Bayesian Object Recognition with Baddeley's Delta Loss,” Advances in Applied Probability, vol. 30, pp.64-84, 1998.
[14] A. Pievatolo and P. Green, “Boundary Detection through Dynamic Polygons,” J. Royal Statistical Soc., vol. B, no. 60, pp. 609-626, 1998.
[15] R. Stoica, X. Descombes, and J. Zerubia, “A Gibbs Point Process for Road Extraction from Remotely Sensed Images,” Int'l J. Computer Vision, vol. 37, no. 2, pp. 121-136, 2004.
[16] C. Lacoste, X. Descombes, and J. Zerubia, “A Comparative Study of Point Processes for Line Network Extraction in Remote Sensing,” INRIA Research Report 4516, 2002.
[17] M. Ortner, “Processus Ponctuels Marquès Pour l'extraction Automatique de Caricatures de Bâtiments à Partir de Modèles Numèriques d'elèvation,” PhD dissertation, Univ. of Nice-Sophia Antipolis, http://www.inria.fr/rrrttu-1138.html, 2004 (in French).
[18] C. Lacoste, “Extraction de Rèseaux Linèiques à Partir d'images Satellitaires et Aèriennes par Processus Ponctuels Marquès,” PhD dissertation, Univ. of Nice-Sophia Antipolis, 2004 (in French).
[19] A. Srivastava, U. Grenander, G. Jensen, and M. Miller, “Jump-Diffusion Markov Processes on Orthogonal Groups for Object Recognition,” J. Statistical Planning and Inference, 1999.
[20] M.N.M. van Lieshout, Markov Point Processes and Their Applications. Imperial College Press, 2000.
[21] M. Ortner, X. Descombes, and J. Zerubia, “A Reversible Jump MCMC Sampler for Building Detection in Image Processing,” Monte Carlo Methods and Quasi-Monte Carlo Methods 2004, Springer, June 2004.
[22] M.N.M. van Lieshout, “Stochastic Annealing for Nearest-Neighbour Point Processes with Application to Object Recognition,” Advances in Applied Probability, vol. 26, pp. 281-300, 1994.
[23] D.J. Strauss, “A Model for Clustering,” Biometrika, vol. 62, pp. 467-475, 1975.
[24] M. Ortner, X. Descombes, and J. Zerubia, “Un Nouveau Modèle Pour l'Extraction de Caricatures de Bâtiments sur des Modèles Numèriques d'Elèvation,” Proc. Conférence Internationale sur le Traitement et Analyse d'Images: Méthodes et Applications Oct. 2003, (in French).
[25] C.J. Geyer, “Likelihood Inference for Spatial Point Processes,” Stochastic Geometry Likelihood and Computation, O. Banorff-Nielsen, W. Kendall, and M. V. Lieshout, eds., Chapman and Hall, 1999.
[26] M.N.M. van Lieshout, “Markovianity in Space and Time,” Dynamics and Stochastics: Festschrift in Honor of Michael Keane, pp.154-167, 2006.
[27] M. Ortner, X. Descombes, and J. Zerubia, “Automatic 3D Land Register Extraction from Altimetric Data in Dense Urban Areas,” INRIA Research Report 4919, Aug. 2003.
[28] R. Stoica, “Processus Ponctuels pour l'Extraction des Rèseaux Linèiques dans les Images Satellitaires et Aèriennes,” PhD dissertation, Univ. of Nice-Sophia Antipolis, 2001, (in French).
[29] M. Ortner, X. Descombes, and J. Zerubia, “A Marked Point Process of Rectangles and Segments for Automatic Analysis of Digital Elevation Models,” INRIA Research Report 5712, Oct. 2005.
[30] P. Green, “Reversible Jump Markov Chain Monte-Carlo Computation and Bayesian Model Determination,” Biometrika, vol. 57, pp.97-109, 1995.
[31] C. Geyer and J. Møller, “Simulation and Likehood Inference for Spatial Point Processes,” Scandinavian J. Statistics Series B, vol. 21, pp. 359-373, 1994.
[32] G. Winkler, Image Analysis, Random Fields and Markov Chain Monte Carlo Methods: A Mathematical Introduction, second ed. Springer, 2003.
20 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool