
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
A. Astorino, A. Fuduli, "Nonsmooth Optimization Techniques for Semisupervised Classification," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 29, no. 12, pp. 11, December, 2007.  
BibTex  x  
@article{ 10.1109/TPAMI.2007.1102, author = {A. Astorino and A. Fuduli}, title = {Nonsmooth Optimization Techniques for Semisupervised Classification}, journal ={IEEE Transactions on Pattern Analysis and Machine Intelligence}, volume = {29}, number = {12}, issn = {01628828}, year = {2007}, pages = {11}, doi = {http://doi.ieeecomputersociety.org/10.1109/TPAMI.2007.1102}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Pattern Analysis and Machine Intelligence TI  Nonsmooth Optimization Techniques for Semisupervised Classification IS  12 SN  01628828 SP1 EP1 EPD  11 A1  A. Astorino, A1  A. Fuduli, PY  2007 KW  Support vector machines KW  Semisupervised learning KW  Support vector machine classification KW  Testing KW  Pattern classification KW  Predictive models KW  Optimization methods KW  Machine learning KW  Mathematical model KW  Computational efficiency KW  bundle methods KW  semisupervised learning KW  nonsmooth optimization VL  29 JA  IEEE Transactions on Pattern Analysis and Machine Intelligence ER   
[1] A. Astorino, A. Fuduli, and M. Gaudioso, “Analysis of Regularization Techniques in Convex Nondifferentiable Optimization,” Operations Research Proc. 1996, pp. 2025, 1997.
[2] M. Belkin and P. Niyogi, “SemiSupervised Learning on Riemannian Manifolds,” Machine Learning, vol. 56, pp. 209239, 2004.
[3] K.P. Bennett and E. Bredensteiner, “Geometry in Learning,” Geometry at Work, C. Gorini, ed., pp. 132145, Math. Assoc. of Am., 2000.
[4] K.P. Bennett and A. Demiriz, “SemiSupervised Support Vector Machines,” Advances in Neural Information Processing Systems, vol. 12, M.S. Kearns, S.A. Solla, and D.A. Cohn, eds., pp. 368374, MIT Press, 1998.
[5] K.P. Bennett and A. Demiriz, “Optimization Approaches to Semi–Supervised Learning,” Complementarity: Applications, Algorithms and Extensions, M. Ferris, O. Mangasarian, and J.S. Pang, eds., pp.121141, Kluwer Academic, 2001.
[6] K.P. Bennett and O.L. Mangasarian, “Robust Linear Programming Discrimination of Two Linearly Inseparable Sets,” Optimization Methods and Software, vol. 1, pp. 2334, 1992.
[7] SemiSupervised Learning, O. Chapelle, B. Schölkopf, and A.Zien, eds., MIT Press, 2006, http://www.kyb.tuebingen.mpg.desslbook, in press.
[8] O. Chapelle and A. Zien, “SemiSupervised Classification by Low Density Separation,” Proc. 10th Int'l Workshop Artificial Intelligence and Statistics, pp. 5764, 2005.
[9] F.H. Clarke, Optimization and Nonsmooth Analysis. John Wiley & Sons, 1983.
[10] R. Collobert, J. Weston, and L. Bottou, “Trading Convexity for Scalability,” technical report, 2005, http://ronan.collobert.compublications/.
[11] N. Cristianini and J. ShaweTaylor, An Introduction to Support Vector Machines and Other KernelBased Learning Methods. Cambridge Univ. Press, 2000.
[12] A. Fuduli and M. Gaudioso, “A Tuning Strategy for the Proximity Parameter in Convex Minimization,” J. Optimization Theory and Applications, vol. 130, pp. 95112, 2006.
[13] A. Fuduli, M. Gaudioso, and G. Giallombardo, “A DC Piecewise Affine Model and Bundling Technique in Nonconvex Nonsmooth Minimization,” Optimization Methods and Software, vol. 18, pp. 89102, 2004.
[14] A. Fuduli, M. Gaudioso, and G. Giallombardo, “Minimizing Nonconvex Nonsmooth Functions via Cutting Planes and Proximity Control,” SIAM J. Optimization, vol. 14, pp. 743756, 2004.
[15] G. Fung and O.L. Mangasarian, “Proximal Support Vector Machine Classifiers,” Proc. Int'l Conf. Knowledge Discovery and Data Mining, pp. 7786, Aug. 2001.
[16] G. Fung and O.L. Mangasarian, “SemiSupervised Support Vector Machines for Unlabeled Data Classification,” Optimization Methods and Software, vol. 15, pp. 2944, 2001.
[17] P.E. Gill, W. Murray, and M.H. Wright, Practical Optimization. Academic Press, 1981.
[18] J.B. HiriartUrruty and C. Lemaréchal, Convex Analysis and Minimization Algorithms, vol. III, SpringerVerlag, 1993.
[19] T. Joachims, “Making LargeScale SVM Learning Practical,” Advances in Kernel Methods—Support Vector Learning, B. Schölkopf, C. Burges, and A. Smola, eds. MIT Press, 1999.
[20] T. Joachims, “Transductive Inference for Text Classification Using Support Vector Machines,” Proc. Int'l Conf. Machine Learning, pp.200209, 1999.
[21] T. Joachims, “Transductive Learning via Spectral Graph Partitioning,” Proc. Int'l Conf. Machine Learning, pp. 290297, 2003.
[22] K.C. Kiwiel, “An Aggregate Subgradient Method for Nonsmooth Convex Minimization,” Math. Programming, vol. 27, pp. 320341, 1983.
[23] K.C. Kiwiel, “Methods of Descent for Nondifferentiable Optimization,” Lecture Notes in Math., vol. 1133, SpringerVerlag, 1985.
[24] K.C. Kiwiel, “Proximity Control in Bundle Methods for Convex Nondifferentiable Minimization,” Math. Programming, vol. 46, pp.105122, 1990.
[25] C. Lemaréchal, “An Algorithm for Minimizing Convex Functions,” Proc. IFIP Congress, J. Rosenfeld, ed., 1974.
[26] M. Mäkelä and P. Neittaanmäki, “Nonsmooth Optimization,” World Scientific, 1992.
[27] R. Mifflin, “An Algorithm for Constrained Optimization with Semismooth Functions,” Math. of Operations Research, vol. 2, pp.191207, 1977.
[28] P.M. Murphy and D.W. Aha, “UCI Repository of Machine Learning Databases,” www.ics.uci.edu/~mlearnMLRepository.html , 1992.
[29] S. Odewahn, E. Stockwell, R. Pennington, R. Humphreys, and W. Zumach, “Automated Star/Galaxy Discrimination with Neural Networks,” Astronomical J., vol. 103, pp. 318331, 1992.
[30] B. Schölkopf, C.J.C. Burges, and A.J. Smola, Advances in Kernel Methods, Support Vector Learning. MIT Press, 1999.
[31] H. Schramm and J. Zowe, “A Version of the Bundle Idea for Minimizing a Nonsmooth Function: Conceptual Idea, Convergence Analysis,” SIAM J. Optimization, vol. 1, pp. 121152, 1992.
[32] J. ShaweTaylor and N. Cristianini, Kernel Methods for Pattern Analysis. Cambridge Univ. Press, 2004.
[33] X. Shen, G.C. Tseng, X. Zhang, and W.H. Wong, “On PsiLearning,” J. Am. Statistical Assoc., vol. 98, pp. 724734, 2003.
[34] V. Vapnik, The Nature of the Statistical Learning Theory. SpringerVerlag, 1995.
[35] P. Wolfe, “A Method of Conjugate Subgradients for Minimizing Nondifferentiable Functions,” Nondifferentiable Optimization, M.Balinski and P. Wolfe, eds., vol. 3, Math. Programming Study, pp.145173, 1975.
[36] A.L. Yuille and A. Rangarajan, “The ConcaveConvex Procedure (CCCP),” Advances in Neural Information Processing Systems, vol. 14, T.G. Detterich, S. Becker, and Z. Ghahramani, eds., MIT Press, 2002.
[37] D. Zhou, O. Bousquet, T.N. Lal, J. Weston, and B. Schölkopf, “Learning with Local and Global Consistency,” Advances in Neural Information Processing System, MIT Press, 2003.
[38] D. Zhou and B. Schölkopf, “Learning from Labeled and Unlabeled Data Using Random Walks,” Proc. 26th Die Dutsche Arbeitsgemeinschaft für Mustererkennung (DAGM) Symp., C.E. Rasmussen, H.H. Büthoff, M.A. Giese, and B. Schölkopf, eds., pp.237244, SpringerVerlag, 2004.
[39] X. Zhu, J. Kandola, Z. Ghahramani, and J. Lafferty, “Nonparametric Transforms of Graph Kernels for SemiSupervised Learning,” Proc. Int'l Conf. Neural Information Processing Systems, 2004.