The Community for Technology Leaders
RSS Icon
Subscribe
Issue No.10 - October (2007 vol.29)
pp: 1683-1699
ABSTRACT
A system that could automatically analyze the facial actions in real time has applications in a wide range of different fields. However, developing such a system is always challenging due to the richness, ambiguity, and the dynamic nature of facial actions. Although a number of research groups attempt to recognize facial action units (AUs) by either improving facial feature extraction techniques, or the AU classification techniques, these methods often recognize AUs or certain AU combinations individually and statically, ignoring the semantic relationships among AUs and the dynamics of AUs. Hence, these approaches cannot always recognize AUs reliably, robustly, and consistently.In this paper, we propose a novel approach that systematically accounts for the relationships among AUs and their temporal evolutions for AU recognition. Specifically, we use a dynamic Bayesian network (DBN) to model the relationships among different AUs. The DBN provides a coherent and unified hierarchical probabilistic framework to represent probabilistic relationships among various AUs and to account for the temporal changes in facial action development. Within our system, robust computer vision techniques are used to obtain AU measurements. And such AU measurements are then applied as evidence to the DBN for inferring various AUs. The experiments show that the integration of AU relationships and AU dynamics with AU measurements yields significant improvement of AU recognition, especially for spontaneous facial expressions and under more realistic environment including illumination variation, face pose variation, and occlusion.
INDEX TERMS
Facial Action Unit Recognition, Facial Expression Analysis, Facial Action Coding System, Bayesian Networks
CITATION
Yan Tong, Wenhui Liao, Qiang Ji, "Facial Action Unit Recognition by Exploiting Their Dynamic and Semantic Relationships", IEEE Transactions on Pattern Analysis & Machine Intelligence, vol.29, no. 10, pp. 1683-1699, October 2007, doi:10.1109/TPAMI.2007.1094
19 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool