This Article 
   
 Share 
   
 Bibliographic References 
   
 Add to: 
 
Digg
Furl
Spurl
Blink
Simpy
Google
Del.icio.us
Y!MyWeb
 
 Search 
   
Minimizing Nonsubmodular Functions with Graph Cuts-A Review
July 2007 (vol. 29 no. 7)
pp. 1274-1279
Optimization techniques based on graph cuts have become a standard tool for many vision applications. These techniques allow to minimize efficiently certain energy functions corresponding to pairwise Markov Random Fields (MRFs). Currently, there is an accepted view within the computer vision community that graph cuts can only be used for optimizing a limited class of MRF energies (e.g., submodular functions). In this survey, we review some results that show that graph cuts can be applied to a much larger class of energy functions (in particular, nonsubmodular functions). While these results are well-known in the optimization community, to our knowledge they were not used in the context of computer vision and MRF optimization. We demonstrate the relevance of these results to vision on the problem of binary texture restoration.
Index Terms:
Energy minimization, Markov Random Fields, quadratic pseudo-Boolean optimization, min cut/max flow, texture restoration.
Citation:
Vladimir Kolmogorov, Carsten Rother, "Minimizing Nonsubmodular Functions with Graph Cuts-A Review," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 29, no. 7, pp. 1274-1279, July 2007, doi:10.1109/TPAMI.2007.1031
Usage of this product signifies your acceptance of the Terms of Use.