The Community for Technology Leaders
RSS Icon
Subscribe
Issue No.09 - September (2006 vol.28)
pp: 1436-1449
O. Lanz , SSI Div., Istituto Trentino di Cultura, Trento
ABSTRACT
Visual tracking of multiple targets is a challenging problem, especially when efficiency is an issue. Occlusions, if not properly handled, are a major source of failure. Solutions supporting principled occlusion reasoning have been proposed but are yet unpractical for online applications. This paper presents a new solution which effectively manages the trade-off between reliable modeling and computational efficiency. The hybrid joint-separable (HJS) filter is derived from a joint Bayesian formulation of the problem, and shown to be efficient while optimal in terms of compact belief representation. Computational efficiency is achieved by employing a Markov random field approximation to joint dynamics and an incremental algorithm for posterior update with an appearance likelihood that implements a physically-based model of the occlusion process. A particle filter implementation is proposed which achieves accurate tracking during partial occlusions, while in cases of complete occlusion, tracking hypotheses are bound to estimated occlusion volumes. Experiments show that the proposed algorithm is efficient, robust, and able to resolve long-term occlusions between targets with identical appearance
INDEX TERMS
Bayesian methods, Target tracking, Computational efficiency, Particle tracking, Robustness, Markov random fields, Particle filters, Computational modeling, Approximation algorithms, Inference algorithms,particle filter., Computer vision, tracking, occlusion, approximate inference, Bayes filter
CITATION
O. Lanz, "Approximate Bayesian multibody tracking", IEEE Transactions on Pattern Analysis & Machine Intelligence, vol.28, no. 9, pp. 1436-1449, September 2006, doi:10.1109/TPAMI.2006.177
17 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool