
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
Andy M. Yip, Chris Ding, Tony F. Chan, "Dynamic Cluster Formation Using Level Set Methods," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 28, no. 6, pp. 877889, June, 2006.  
BibTex  x  
@article{ 10.1109/TPAMI.2006.117, author = {Andy M. Yip and Chris Ding and Tony F. Chan}, title = {Dynamic Cluster Formation Using Level Set Methods}, journal ={IEEE Transactions on Pattern Analysis and Machine Intelligence}, volume = {28}, number = {6}, issn = {01628828}, year = {2006}, pages = {877889}, doi = {http://doi.ieeecomputersociety.org/10.1109/TPAMI.2006.117}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Pattern Analysis and Machine Intelligence TI  Dynamic Cluster Formation Using Level Set Methods IS  6 SN  01628828 SP877 EP889 EPD  877889 A1  Andy M. Yip, A1  Chris Ding, A1  Tony F. Chan, PY  2006 KW  Dynamic clustering KW  level set methods KW  cluster intensity functions KW  kernel density estimation KW  cluster contours KW  partial differential equations. VL  28 JA  IEEE Transactions on Pattern Analysis and Machine Intelligence ER   
[1] J. Han and M. Kamber, Data Mining: Concepts and Techniques. Morgan Kaufman, 2001.
[2] A.K. Jain, M.N. Murty, and P.J. Flyn, “Data Clustering: A Review,” ACM Computer Surveys, vol. 31, no. 3, pp. 264323, 1999.
[3] L. Kaufman and P. Rousseeuw, Finding Groups in Data: An Introduction to Cluster Analysis. John Wiley and Sons, 1990.
[4] P. Berkhin, “Survey of Clustering Data Mining Techniques,” technical report, Accrue Software, 2002.
[5] P. Hansen and B. Jaumard, “Cluster Analysis and Mathematical Programming,” Math. Programming, vol. 79, pp. 191215, 1997.
[6] S.P. Lloyd, “Least Squares Quantization in PCM,” IEEE Trans. Information Theory, vol. 28, no. 2, pp. 129137, 1982.
[7] J. MacQueen, “Some Methods for Classification and Analysis of Multivariate Observations,” Proc. Fifth Berkeley Symp. Math. Statistics and Probability, vol. I: Statistics, pp. 281297, 1967.
[8] A. Banerjee, S. Merugu, I. Dhillon, and J. Ghosh, “Clustering with Bregman Divergences,” Proc. Fourth SIAM Int'l Conf. Data Mining, pp. 234245, 2004.
[9] R.T. Ng and J. Han, “Efficient and Effective Clustering Methods for Spatial Data Mining,” Proc. 20th Int'l Conf. Very Large Data Bases, pp. 144155, 1994.
[10] C. Ding and X. He, “Cluster Aggregate Inequality and MultiLevel Hierarchical Clustering,” Proc. Ninth European Conf. Principles of Data Mining and Knowledge Discovery, pp. 7183, 2005.
[11] G. Karypis, E. Han, and V. Kumar, “CHAMELEON: A Hierarchical Clustering Algorithm Using Dynamic Modeling,” Computer, vol. 32, pp. 6875, 1999.
[12] K. Fukunaga, Introduction to Statistical Pattern Recognition, second ed. Boston Academic Press, 1990.
[13] M. Ester, H. Kriegel, J. Sander, and X. Xu, “A DensityBased Algorithm for Discovering Clusters in Large Spatial Databases with Noise,” Proc. Int'l Conf. Knowledge Discovery and Data Mining, pp. 226231, 1996.
[14] J. Sander, M. Ester, H. Kriegel, and X. Xu, “DensityBased Clustering in Spatial Databases: The Algorithm GDBSCAN and Its Applications,” Data Mining and Knowledge Discovery, vol. 2, no. 2, pp. 169194, 1998.
[15] R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan, “Automatic Subspace Clustering of High Dimensional Data for Data Mining Applications,” Proc. ACMSIGMOD Int'l Conf. Management of Data, pp. 94105, 1998.
[16] A. Hinneburg and D.A. Keim, “An Efficient Approach to Clustering in Large Multimedia Databases with Noise,” Proc. Int'l Conf. Knowledge Discovery and Data Mining, pp. 5865, 1998.
[17] M. Ankerst, M. Breunig, H.P. Kriegel, and J. Sander, “OPTICS: Ordering Points to Identify the Clustering Structure,” Proc. ACMSIGMOD Int'l Conf. Management of Data, pp. 4960, 1999.
[18] W. Wang, J. Yang, and R. Muntz, “STING: A Statistical Information Grid Approach to Spatial Data Mining,” Proc. 23rd Very Large Data Bases Conf., pp. 186195, 1997.
[19] G. Sheikholeslami, S. Chatterjee, and A. Zhang, “WaveCluster: A WaveletBased Clustering Approach for Spatial Data in Very Large Databases,” The Very Large Databases J., vol. 8, pp. 289304, 2000.
[20] C. Ding, X. He, H. Zha, M. Gu, and H. Simon, “Spectral MinMax Cut for Graph Partitioning and Data Clustering,” Proc. First IEEE Int'l Conf. Data Mining, pp. 107114, 2001.
[21] L. Ertoz, M. Steinbach, and V. Kumar, “Finding Clusters of Different Sizes, Shapes, and Densities in Noisy, High Dimensional Data,” Proc. Third SIAM Int'l Conf. Data Mining, pp. 4758, 2003.
[22] R. Sharan and R. Shamir, “CLICK: A Clustering Algorithm with Applications to Gene Expression Analysis,” Proc. Int'l Conf. Intelligent Systems for Molecular Biology, pp. 307316, 2000.
[23] G.J. McLachlan and D. Peel, Finite Mixture Models. Wiley, 2001.
[24] E. Parzen, “On Estimation of a Probability Density Function and Mode,” Ann. Math. Statistics, vol. 33, pp. 10651076, 1962.
[25] R. Duda, P. Hart, and D. Stork, Pattern Classification, second ed. WileyInterscience, 2001.
[26] S.R. Sain, K.A. Baggerly, and D.W. Scott, “CrossValidation of Multivariate Densities,” J. Am. Statisitcal Assoc., vol. 89, pp. 807817, 1992.
[27] J.A. Sethian, Level Set Methods and Fast Marching Methods, second ed. New York: Cambridge Univ. Press, 1999.
[28] S. Osher and R. Fedkiw, Level Set Methods and Dynamic Implicit Surfaces. New York: Spring Verlag, 2003.
[29] A.K. Jain, Fundamentals of Digital Image Processing. Prentice Hall, 1988.
[30] S. Osher and J.A. Sethian, “Fronts Propagating with CurvatureDependent Speed: Algorithms Based on HamitonJacobi Formulations,” J. Computational Physics, vol. 79, pp. 1249, 1988.
[31] H.K. Zhao, T. Chan, B. Merriman, and S. Osher, “A Variational Level Set Approach to Multiphase Motion,” J. Compuational Physics, vol. 127, pp. 179195, 1996.
[32] V. Caselles, F. Catté, T. Coll, and F. Dibos, “A Geometric Model for Active Contours in Image Processing,” Numerische Mathematik, vol. 66, pp. 131, 1993.
[33] A. BenHur, D. Horn, H.T. Siegelmann, and V. Vapnik, “Support Vector Clustering,” J. Machine Learning Research, vol. 2, pp. 125137, 2001.
[34] P. Spellman, G. Sherlock, M. Zhang, V. Iyer, and K. Anders, “Comprehensive Identification of Cell CycleRegulated Genes of the Yeast Saccharomyces Cerevisiae by Microarray Hybridization,” Molecular Biology Cell, vol. 9, no. 12, pp. 32733297, 1998.
[35] I.T. Jolliffe, Principal Component Analysis, second ed. Springer, 2002.
[36] G. Sapiro, Geometric Partial Differential Equations. New York: Cambridge Univ. Press, 2001.
[37] Y.R. Tsai, L. Cheng, S. Osher, and H. Zhao, “Fast Sweeping Algorithms for a Class of HamiltonJacobi Equations,” SIAM J. Numerical Analysis, vol. 41, no. 2, pp. 673694, 2003.
[38] C. Zenger, “Sparse Grids,” Parallel Algorithms for Partial Differntial Equations, vol. 31, 1991.
[39] H. Bungartz and M. Griebel, “Sparse Grids,” Acta Numerica, pp. 147269, 2004.
[40] J. Garcke and M. Griebel, “Classification with Sparse Grids Using Simplicial Basis Functions,” Proc. Seventh ACM SIGKDD, pp. 8796, 2001.
[41] J. Garcke, M. Griebel, and M. Thess, “Data Mining with Sparse Grids,” Computing, vol. 67, no. 3, pp. 225253, Mar. 2001.
[42] J. Garcke, M. Hegland, and O. Nielsen, “Parallelisation of Sparse Grids for Large Scale Data Analysis,” Proc. Int'l Conf. Computational Science, pp. 683692, 2003.