The Community for Technology Leaders
RSS Icon
Subscribe
Issue No.04 - April (2006 vol.28)
pp: 509-521
Baris Sumengen , IEEE Computer Society
ABSTRACT
In this paper, we introduce new types of variational segmentation cost functions and associated active contour methods that are based on pairwise similarities or dissimilarities of the pixels. As a solution to a minimization problem, we introduce a new curve evolution framework, the graph partitioning active contours (GPAC). Using global features, our curve evolution is able to produce results close to the ideal minimization of such cost functions. New and efficient implementation techniques are also introduced in this paper. Our experiments show that GPAC solution is effective on natural images and computationally efficient. Experiments on gray-scale, color, and texture images show promising segmentation results.
INDEX TERMS
Curve evolution, active contours, image segmentation, pairwise similarity measures, graph partitioning.
CITATION
Baris Sumengen, B.S. Manjunath, "Graph Partitioning Active Contours (GPAC) for Image Segmentation", IEEE Transactions on Pattern Analysis & Machine Intelligence, vol.28, no. 4, pp. 509-521, April 2006, doi:10.1109/TPAMI.2006.76
25 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool