
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
Guy Lebanon, "Metric Learning for Text Documents," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 28, no. 4, pp. 497508, April, 2006.  
BibTex  x  
@article{ 10.1109/TPAMI.2006.77, author = {Guy Lebanon}, title = {Metric Learning for Text Documents}, journal ={IEEE Transactions on Pattern Analysis and Machine Intelligence}, volume = {28}, number = {4}, issn = {01628828}, year = {2006}, pages = {497508}, doi = {http://doi.ieeecomputersociety.org/10.1109/TPAMI.2006.77}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Pattern Analysis and Machine Intelligence TI  Metric Learning for Text Documents IS  4 SN  01628828 SP497 EP508 EPD  497508 A1  Guy Lebanon, PY  2006 KW  Distance learning KW  text analysis KW  machine learning. VL  28 JA  IEEE Transactions on Pattern Analysis and Machine Intelligence ER   
[1] S. Amari and H. Nagaoka, Methods of Information Geometry. Am. Math. Soc., 2000.
[2] A. Gous, “Exponential and Spherical Subfamily Models,” Stanford Univ., 1998.
[3] K. Hall and T. Hofmann, “Learning Curved Multinomial Subfamilies for Natural Language Processing and Information Retrieval,” Proc. 17th Int'l Conf. Machine Learning, P. Langley, ed., pp. 351358, 2000.
[4] T. Joachims, “The Maximum Margin Approach to Learning Text Classifiers Methods, Theory and Algorithms,” PhD thesis, Dortmund Univ., 2000.
[5] R.E. Kass and P.W. Voss, Geometrical Foudnation of Asymptotic Inference. John Wiley and Sons, Inc., 1997.
[6] G.R.G. Lanckriet, P. Bartlett, N. Cristianini, L. ElGhaoui, and M.I. Jordan, “Learning the Kernel Matrix with Semidefinite Programming,” J. Machine Learning Research, vol. 5, pp. 2772, 2004.
[7] G. Lebanon, “Riemannian Geometry and Statistical Machine Learning,” Technical Report CMULTI05189, Carengie Mellon Univ., 2005.
[8] J.M. Lee, Introduction to Topological Manifolds. Springer, 2000.
[9] J.M. Lee, Introduction to Smooth Manifolds. Springer, 2002.
[10] M.K. Murray and J.W. Rice, Differential Geometry and Statistics. CRC Press, 1993.
[11] S. Roweis and L. Saul, “Nonlinear Dimensionality Reduction by Locally Linear Embedding,” Science, vol. 290, p. 2323, 2000.
[12] L.K. Saul and M.I. Jordan, “A Variational Principle for ModelBased Interpolation,” Advances in Neural Information Processing Systems 9, M.C. Mozer, M.I. Jordan, and T. Petsche, eds., 1997.
[13] E.P. Xing, A.Y. Ng, M.I. Jordan, and S. Russel, “Distance Metric Learning with Applications to Clustering with Side Information,” Advances in Neural Information Processing Systems, 15, S. Becker, S. Thrun, and K. Obermayer, eds., pp. 505512, 2003.