
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
Alberto PascualMontano, J.M. Carazo, Kieko Kochi, Dietrich Lehmann, Roberto D. PascualMarqui, "Nonsmooth Nonnegative Matrix Factorization (nsNMF)," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 28, no. 3, pp. 403415, March, 2006.  
BibTex  x  
@article{ 10.1109/TPAMI.2006.60, author = {Alberto PascualMontano and J.M. Carazo and Kieko Kochi and Dietrich Lehmann and Roberto D. PascualMarqui}, title = {Nonsmooth Nonnegative Matrix Factorization (nsNMF)}, journal ={IEEE Transactions on Pattern Analysis and Machine Intelligence}, volume = {28}, number = {3}, issn = {01628828}, year = {2006}, pages = {403415}, doi = {http://doi.ieeecomputersociety.org/10.1109/TPAMI.2006.60}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Pattern Analysis and Machine Intelligence TI  Nonsmooth Nonnegative Matrix Factorization (nsNMF) IS  3 SN  01628828 SP403 EP415 EPD  403415 A1  Alberto PascualMontano, A1  J.M. Carazo, A1  Kieko Kochi, A1  Dietrich Lehmann, A1  Roberto D. PascualMarqui, PY  2006 KW  Index Terms nonnegative matrix factorization KW  constrained optimization KW  datamining KW  mining methods and algorithms KW  pattern analysis KW  feature extraction or construction KW  sparse KW  structured KW  and very large systems. VL  28 JA  IEEE Transactions on Pattern Analysis and Machine Intelligence ER   
[1] P. Paatero and U. Tapper, “Positive Matrix Factorization— A Nonnegative Factor Model with Optimal Utilization of ErrorEstimates of Data Values,” Environmetrics, vol. 5, pp. 111126, 1994.
[2] D.D. Lee and H.S. Seung, “Learning the Parts of Objects by Nonnegative Matrix Factorization,” Nature, vol. 401, pp. 788791, 1999.
[3] A. Hyvärinen, J. Karhunen, and E. Oja, Independent Component Analysis. John Wiley and Sons, 2001.
[4] P.M. Kim and B. Tidor, “Subsystem Identification through Dimensionality Reduction of LargeScale Gene Expression Data,” Genome Research, vol. 13, pp. 17061718, 2003.
[5] A. Heger and L. Holm, “Sensitive Pattern Discovery with `Fuzzy' Alignments of Distantly Related Proteins,” Bioinformatics, vol. 19, no. 1, pp. 130137, 2003.
[6] P. Paatero, P.K. Hopke, J. Hoppenstock, and S.I. Eberly, “Advanced Factor Analysis of Spatial of PM2.5 in the Eastern United States,” Environ Science Technology, vol. 37, pp. 24602476, 2003.
[7] J.P. Brunet, P. Tamayo, T.R. Golub, and J.P. Mesirov, “Metagenes and Molecular Pattern Discovery Using Matrix Factorization,” Proc. Nat'l Academy of Science USA, vol. 101, pp. 41644169, 2004.
[8] D. Guillamet and J. Vitria, “Nonnegative Matrix Factorization for Face Recognition,” Proc. Conf. Topics in Artificial Intelligence, pp. 336344, 2002.
[9] R. Ramanath, W.E. Snyder, and H. Qi, “Eigenviews for Object Recognition in Multispectral Imaging Systems,” Proc. Applied Imagery Pattern Recognition (AIPR) Workshop, 2003.
[10] G. Buchsbaum and O. Bloch, “Color Categories Revealed by Nonnegative Matrix Factorization of Munsell Color Spectra,” Vision Research, vol. 42, pp. 559563, 2002.
[11] R. Ramanath, R.G. Kuehni, W.E. Snyder, and D. Hinks, “Spectral Spaces and Color Spaces,” Color Research and Application, vol. 29, pp. 2937, 2004.
[12] P. Smaragdis and J.C. Brown, “Nonnegative Matrix Factorization for Polyphonic Music Transcription,” Proc. IEEE Workshop Applications of Signal Processing to Audio and Acoustics, 2003.
[13] B.W. Mel, “Computational Neuroscience. Think Positive to Find Parts,” Nature, vol. 401, pp. 759760, 1999.
[14] T. Feng, S.Z. Li, H.Y. Shum, and H. Zhang, “Local Nonnegative Matrix Factorization as a Visual Representation,” Proc. Second Int'l Conf. Development and Learning (ICDL '02), 2002.
[15] P.O. Hoyer, “Nonnegative Sparse Coding,” Proc. IEEE Workshop Neural Networks for Signal Processing, 2002.
[16] P.O. Hoyer, “Nonnegative Matrix Factorization with Sparseness Constraints,” J. Machine Learning Research, vol. 5, pp. 14571469, 2004.
[17] W. Liu, N. Zheng, and X. Lu, “Nonnegative Matrix Factorization for Visual Coding,” Proc. IEEE Int'l Conf. Acoustics, Speech, and Signal Processing (ICASSP 2003), 2003.
[18] B.A. Olshausen and D.J. Field, “Emergence of SimpleCell Receptive Field Properties by Learning a Sparse Code for Natural Images,” Nature, vol. 381, pp. 607609, 1996.
[19] G.F. Harpur and R.W. Prager, “Development of Low Entropy Coding in a Recurrent Network,” Network: Computation in Neural Systems, vol. 7, pp. 277284, 1996.
[20] D. Donoho and V. Stodden, “When Does Nonnegative Matrix Factorization Give a Correct Decomposition into Parts?” Proc. 17th Ann. Conf. Neural Information Processing Systems (NIPS 2003), 2003.
[21] MIT Center For Biological and Computation Learning, CBCL Face Database #1, http://www.ai.mit.edu/projectscbcl, 2005.
[22] R.D. PascualMarqui, C.M. Michel, and D. Lehmann, “Low Resolution Electromagnetic Tomography: A New Method for Localizing Electrical Activity in the Brain,” Int'l J. Psychophysiology, vol. 18, pp. 4965, 1994.
[23] J. Yao and J.P. Dewald, “Evaluation of Different Cortical Source Localization Methods Using Simulated and Experimental EEG Data,” Neuroimage, vol. 25, pp. 369382, 2005.
[24] C. Mulert, L. Jager, R. Schmitt, P. Bussfeld, O. Pogarell, H.J. Moller, G. Juckel, and U. Hegerl, “Integration of fMRI and Simultaneous EEG: Towards a Comprehensive Understanding of Localization and TimeCourse of Brain Activity in Target Detection,” Neuroimage, vol. 22, pp. 8394, 2004.
[25] R.D. PascualMarqui, “Review of Methods for Solving the EEG Inverse Problem,” Int'l J. Bioelectromagnetism, vol. 1, pp. 7586, 1999.
[26] S.C. Madeira and A.L. Oliveira, “Biclustering Algorithms for Biological Data Analysis: A Survey,” IEEE/ACM Trans. Computational Biology and Bioinformatics, vol. 1, pp. 2445, 2004.
[27] A. Tanay, R. Sharan, and R. Shamir, “Biclustering Algorithms: A Survey,” Handbook of Computational Molecular Biology, in press.
[28] Q. Sheng, Y. Moreau, and B. DeMoor, “Biclustering Microarray Data by Gibbs Sampling,” Bioinformatics, vol. 19, no. 2, pp. 196205, 2003.
[29] Y. Kluger, R. Basri, J.T. Chang, and M. Gerstein, “Spectral Biclustering of Microarray Data: Coclustering Genes and Conditions,” Genome Research, vol. 13, pp. 703716, 2003.
[30] A. Tanay, R. Sharan, and R. Shamir, “Discovering Statistically Significant Biclusters in Gene Expression Data,” Bioinformatics, vol. 18, no. 1, pp. 136144, 2002.
[31] Y. Cheng and G.M. Church, “Biclustering of Expression Data,” Proc. Int'l Conf. Intellegent Systems Molecular Biology, vol. 8, pp. 93103, 2000.
[32] H. Turner, T. Bailey, and W. Krzanowski, “Improved Biclustering of Microarray Data Demonstrated through Systematic Performance Tests,” Computational Statistics and Data Analysis, vol. 48, pp. 235254, 2005.
[33] Y. Kluger, R. Basri, J.T. Chang, and M. Gerstein, “Spectral Biclustering of Microarray Data: Coclustering Genes and Conditions,” Genome Research, vol. 13, pp. 703716, 2003.
[34] M. Dugas, S. Merk, S. Breit, and P. Dirschedl, “Mdclust— Exploratory Microarray Analysis by Multidimensional Clustering,” Bioinformatics, vol. 20, pp. 931936, 2004.
[35] S.H. Srinivasan, “Features for Unsupervised Document Classification,” Proc. Sixth Workshop Computational Language Learning (CoNLL2002), 2002.
[36] J.H. Chang, J.W. Lee, Y. Kim, and B.T. Zhang, “Topic Extraction from Text Documents Using MultipleCause Networks,” Proc. Seventh Pacific Rim Int'l Conf. Artificial Intelligence: Trends in Artificial Intelligence, 2002.
[37] I. VanMechelen, H.H. Bock, and P. DeBoeck, “TwoMode Clustering Methods: A Structured Overview,” Statistical Methods in Medical Research, vol. 13, pp. 363394, 2004.