The Community for Technology Leaders
RSS Icon
Subscribe
Issue No.10 - October (2005 vol.27)
pp: 1680-1683
Li Yang , IEEE
ABSTRACT
Isometric data embedding requires construction of a neighborhood graph that spans all data points so that geodesic distance between any pair of data points could be estimated by distance along the shortest path between the pair on the graph. This paper presents an approach for constructing k-edge-connected neighborhood graphs. It works by finding k edge-disjoint spanning trees the sum of whose total lengths is a minimum. Experiments show that it outperforms the nearest neighbor approach for geodesic distance estimation.
INDEX TERMS
Index Terms- Data embedding, dimensionality reduction, manifold learning, minimum spanning tree, neighborhood graph.
CITATION
Li Yang, "Building k Edge-Disjoint Spanning Trees of Minimum Total Length for Isometric Data Embedding", IEEE Transactions on Pattern Analysis & Machine Intelligence, vol.27, no. 10, pp. 1680-1683, October 2005, doi:10.1109/TPAMI.2005.192
24 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool