
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
Kwang In Kim, Matthias O. Franz, Bernhard Sch?lkopf, "Iterative Kernel Principal Component Analysis for Image Modeling," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 27, no. 9, pp. 13511366, September, 2005.  
BibTex  x  
@article{ 10.1109/TPAMI.2005.181, author = {Kwang In Kim and Matthias O. Franz and Bernhard Sch?lkopf}, title = {Iterative Kernel Principal Component Analysis for Image Modeling}, journal ={IEEE Transactions on Pattern Analysis and Machine Intelligence}, volume = {27}, number = {9}, issn = {01628828}, year = {2005}, pages = {13511366}, doi = {http://doi.ieeecomputersociety.org/10.1109/TPAMI.2005.181}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Pattern Analysis and Machine Intelligence TI  Iterative Kernel Principal Component Analysis for Image Modeling IS  9 SN  01628828 SP1351 EP1366 EPD  13511366 A1  Kwang In Kim, A1  Matthias O. Franz, A1  Bernhard Sch?lkopf, PY  2005 KW  Index Terms Principal component analysis KW  kernel methods KW  image models KW  image enhancement KW  unsupervised learning. VL  27 JA  IEEE Transactions on Pattern Analysis and Machine Intelligence ER   
[1] S. Akkarakaran and P.P. Vaidyanathan, “The Role of Principal Component Filter Banks in Noise Reduction,” Wavelet Applications in Signal and Image Processing VII, pp. 346357, vol. 3813, 1999.
[2] R.J. Baddeley and P.J.B. Hancock, “A Statistical Analysis of Natural Images Predicts Psychophysically Derived Orientation Tuning Curves,” Proc. Royal Soc. B, vol. 246, no. 1317, pp. 219223, 1991.
[3] S. Baker and T. Kanade, “Limits on SuperResolution and How to Break Them,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 24, no. 9, pp. 11671183, Sept. 2002.
[4] A.J. Bell and T.J. Sejnowski, “The 'Independent Components' of Natural Scenes are Edge Filters,” Vision Research, vol. 37, pp. 33273338, 1997.
[5] R.W. Buccigrossi and E.P. Simoncelli, “Image Compression via Joint Statistical Characterization in the Wavelet Domain,” IEEE Trans. Image Processing, vol. 8, no. 12, pp. 16881701, 1999.
[6] C.J.C. Burges, “Simplified Support Vector Decision Rules,” Proc. 13th Int'l Conf. Machine Learning, pp. 7177, 1996.
[7] O. Chapelle and V. Vapnik, “Model Selection for Support Vector Machines,” Advances in Neural Information Processing Systems 12, S.A. Solla, T.K. Leen, and K.R. Müller, eds. MIT Press, 2000.
[8] T. Chen, Y. Hua, and W.Y. Yan, “Global Convergence of Oja's Subspace Algorithm for Principal Component Extraction,” IEEE Trans. Neural Networks, vol. 9, no. 1, pp. 5867, 1998.
[9] H. Choi and R.G. Baraniuk, “Multiple Basis Wavelet Denoising Using Besov Projections,” Proc. IEEE Int'l Conf. Image Processing, pp. 595599, 1999.
[10] N. Cristianini, J. ShaweTaylor, A. Elisseeff, and J. Kandola, “On KernelTarget Alignment,” Advances in Neural Information Processing Systems 14, T.G. Dietterich, S. Becker, and Z. Ghahramani, eds. Cambridge, Mass.: MIT Press, 2002.
[11] D.J. Field, “What Is the Goal of Sensory Coding?” Neural Computation, vol. 6, pp. 559601, 1994.
[12] M.O. Franz and B. Schölkopf, “Implicit Estimation of Wiener Series,” Machine Learning in Signal Processing XIV, Proc. IEEE Signal Processing Soc. Workshop, A. Barros, J. Principe, J. Larsen, T. Adali, and S. Douglas, eds., pp. 735744, 2004.
[13] W.T. Freeman, T.R. Jones, and E.C. Pasztor, “ExampleBased SuperResolution,” IEEE Computer Graphics and Applications, vol. 22, no. 2, pp. 5665, 2002.
[14] W.T. Freeman, E.C. Pasztor, and O.T. Carmichael, “Learning LowLevel Vision,” Int'l J. Computer Vision, vol. 40, no. 1, pp. 2547, 2000.
[15] A.S. Georghiades, P.N. Belhumeur, and D.J. Kriegman, “From Few to Many: Illumination Cone Models for Face Recognition under Variable Lighting and Pose,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 23, no. 6, pp. 643660, June 2001.
[16] F. Girosi, “An Equivalence between Sparse Approximation and Support Vector Machines,” Neural Computation, vol. 10, no. 6, pp. 14551480, 1998.
[17] R.C. Gonzalez and R.E. Woods, Digital Image Processing. Addison Wesley, 1992.
[18] U. Grenander and A. Srivastava, “Probability Models for Clutter in Natural Images,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 23, no. 4, pp. 424429, Apr. 2001.
[19] J. Ham, D.D. Lee, S. Mika, and B. Schölkopf, “A Kernel View of the Dimensionality Reduction of Manifolds,” Technical Report 110, MaxPlanckInsitut für Biologische Kybernetik, Tübingen, Germany, July 2003.
[20] P.J.B. Hangcock, R.J. Baddely, and L.S Smith, “The Principal Components of Natural Images,” Network, vol. 3, pp. 6170, 1992.
[21] S. Hayk, Neural Networks: A Comprehensive Foundation, second ed. Prentice Hall, 1999.
[22] R. Herbrich, Learning Kernel Classifiers: Theory and Algorithms. Cambridge, Mass.: MIT Press, 2001.
[23] A. Hertzmann, C.E. Jacobs, N. Oliver, B. Curless, and D.H. Salesin, “Image Analogies,” Computer Graphics (Proc. Siggraph 2001), pp. 327340, 2001.
[24] J. Hurri, A. Hyvärinen, J. Karhunen, and E. Oja, “Image Feature Extraction Using Independent Component Analysis,” Proc. IEEE 1996 Nordic Conf. Signal Processing (NORSIG '96), 1996.
[25] R. Keys, “Cubic Convolution Interpolation for Digital Image Processing,” IEEE Trans. Acoustics, Speech, Signal Processing, vol. 29, no. 6, pp. 11531160, 1981.
[26] K.I. Kim, M.O. Franz, and B. Schölkopf, “Kernel Hebbian Algorithm for Iterative Kernel Principal Component Analysis,” Technical Report 109, MaxPlanckInsitut für Biologische Kybernetik, Tübingen, Germany, June 2003.
[27] J.T. Kwok, B. Mak, and S. Ho, “Eigenvoice Speaker Adaptation via Composite Kernel Principal Component Analysis,” Advances in Neural Information Processing Systems, S. Thrun, L. Saul, and B. Schölkopf, eds. Cambridge, Mass.: MIT Press, 2004.
[28] J.T. Kwok and I.W. Tsang, “The PreImage Problem in Kernel Methods,” IEEE Trans. Neural Networks, vol. 15, no. 6, pp. 15171525, 2004.
[29] A.B. Lee, D. Mumford, and J. Huang, “Occlusion Models for Natural Images: A Statistical Study of a ScaleInvariant Dead Leaves Model,” Int'l J. Computer Vision, vol. 41, nos. 1/2, pp. 3559, 2001.
[30] J. Malik, S. Belongie, T. Leung, and J. Shi, “Contour and Texture Analysis for Image Segmentation,” Int'l J. Computer Vision, vol. 43, no. 1, pp. 727, 2001.
[31] S. Mika, G. Rätsch, J. Weston, B. Schölkopf, and K.R. Müller, “Fisher Discriminant Analysis with Kernels,” Neural Networks for Signal Processing IX, Y.H. Hu, J. Larsen, E. Wilson, and S. Douglas, eds., pp. 4148. IEEE, 1999.
[32] S. Mika, B. Schölkopf, A.J. Smola, K.R. Müller, M. Scholz, and G. Rätsch, “Kernel PCA and DeNoising in Feature Spaces,” Advances in Neural Information Processing Systems 11, M.S. Kearns, S.A. Solla, and D.A. Cohn, eds., pp. 536542. Cambridge, Mass.: MIT Press, 1999.
[33] D.C. Munson, “A Note on Lena,” IEEE Trans. Image Processing, vol. 5, no. 1, 1996.
[34] E. Oja, “A Simplified Neuron Model as a Principal Component Analyzer,” J. Math. Biology, vol. 15, pp. 267273, 1982.
[35] E. Oja, “Principal Components, Minor Components, and Linear Neural Networks,” Neural Networks, vol. 5, pp. 927935, 1992.
[36] B.A. Olshausen and D.J. Field, “Emergence of SimpleCell Receptive Field Properties by Learning a Sparse Code for Natural Images,” Nature, vol. 381, pp. 607609, 1996.
[37] A. Pizurica and W. Philips, “Estimating Probability of Presence of a Signal of Interest in Multiresolution Single and Multiband Image Denoising,” IEEE Trans. Image Processing, in press.
[38] T. Poggio and F. Girosi, “Extension of a Theory of Networks for Approximation and Learning: Dimensionality Reduction and Clustering,” Proc. Image Understanding Workshop, pp. 597603, 1990.
[39] S. Romdhani, S. Gong, and A. Psarrou, “A Multiview Nonlinear Active Shape Model Using Kernel PCA,” Proc. British Machine Vision Conf., pp. 483492, 1999.
[40] D.L. Ruderman, “Origins of Scaling in Natural Images,” Vision Research, vol. 37, no. 23, pp. 33853395, 1997.
[41] T.D. Sanger, “Optimal Unsupervised Learning in a SingleLayer Linear Feedforward Neural Network,” Neural Networks, vol. 12, pp. 459473, 1989.
[42] B. Schölkopf and A. Smola, Learning with Kernels. Cambridge, Mass.: MIT Press, 2002.
[43] B. Schölkopf, A. Smola, and K. Müller, “Nonlinear Component Analysis as a Kernel Eigenvalue Problem,” Neural Computation, vol. 10, no. 5, pp. 12991319, 1998.
[44] E.P. Simoncelli, “Bayesian Denoising of Visual Images in the Wavelet Domain,” Bayesian Inference in Wavelet Based Models, P. Müller and B. Vidakovic, eds., pp. 291308. New York: Springer, 1999.
[45] I. Steinwart, “On the Influence of the kernel on the Consistency of Support Vector Machines,” J. Machine Learning Research, vol. 2, pp. 6793, 2001.
[46] A. Turk and A.P. Pentland, “Face Recognition Using Eigenfaces,” Proc. IEEE Conf. Computer Vision and Pattern Recognition, pp. 586591, 1991.
[47] C.J. Twining and C.J. Taylor, “Kernel Principal Component Analysis and the Construction of NonLinear Active Shape Models,” Proc. British Machine Vision Conf., pp. 2332, 2001.
[48] V. Vapnik and O. Chapelle, “Bounds on Error Expectation for SVM,” Advances in Large Margin Classifiers, A.J. Smola, P.L. Bartlett, B. Schölkopf, and D. Schuurmans, eds., pp. 261280. Cambridge, Mass.: MIT Press, 2000.
[49] U. von Luxburg, O. Bousquet, and B. Schölkopf, “A Compression Approach to Support Vector Model Selection,” The J. Machine Learning Research, vol. 5, pp. 293323, 2004.
[50] S. Yoshizawa, U. Helmke, and K. Starkov, “Convergence Analysis for Principal Component Flows,” Int'l J. Applied Math. Computer Science, vol. 11, no. 1, pp. 223236, 2001.
[51] S. Zhu and D. Mumford, “Prior Learning and Gibbs ReactionDiffusion,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 19, no. 11, pp. 12361250, Nov. 1997.