
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
Richard C. Wilson, Edwin R. Hancock, Bin Luo, "Pattern Vectors from Algebraic Graph Theory," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 27, no. 7, pp. 11121124, July, 2005.  
BibTex  x  
@article{ 10.1109/TPAMI.2005.145, author = {Richard C. Wilson and Edwin R. Hancock and Bin Luo}, title = {Pattern Vectors from Algebraic Graph Theory}, journal ={IEEE Transactions on Pattern Analysis and Machine Intelligence}, volume = {27}, number = {7}, issn = {01628828}, year = {2005}, pages = {11121124}, doi = {http://doi.ieeecomputersociety.org/10.1109/TPAMI.2005.145}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Pattern Analysis and Machine Intelligence TI  Pattern Vectors from Algebraic Graph Theory IS  7 SN  01628828 SP1112 EP1124 EPD  11121124 A1  Richard C. Wilson, A1  Edwin R. Hancock, A1  Bin Luo, PY  2005 KW  Index Terms Graph matching KW  graph features KW  spectral methods. VL  27 JA  IEEE Transactions on Pattern Analysis and Machine Intelligence ER   
[1] A.D. Bagdanov and M. Worring, “First Order Gaussian Graphs for Efficient Structure Classification,” Pattern Recogntion, vol. 36, pp. 13111324, 2003.
[2] M. Belkin and P. Niyogi, “Laplacian Eigenmaps for Dimensionality Reduction and Data Representation,” Neural Computation, vol. 15, no. 6, pp. 13731396, 2003.
[3] N. Biggs, Algebraic Graph Theory. Cambridge Univ. Press, 1993.
[4] P. Botti and R. Morris, “Almost All Trees Share a Complete Set of Inmanantal Polynomials,” J. Graph Theory, vol. 17, pp. 467476, 1993.
[5] W.J. Christmas, J. Kittler, and M. Petrou, “Structural Matching in Computer Vision Using Probabilistic Relaxation,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 17, pp. 749764, 1995.
[6] F.R.K. Chung, “Spectral Graph Theory,” Am. Math. Soc. Edition., CBMS series 92, 1997.
[7] T. Cox and M. Cox, Multidimensional Scaling. ChapmanHall, 1994.
[8] D. Cvetkovic, P. Rowlinson, and S. Simic, Eigenspaces of Graphs. Cambridge Univ. Press, 1997.
[9] S. Gold and A. Rangarajan, “A Graduated Assignment Algorithm for Graph Matching,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 18, pp. 377388, 1996.
[10] X. He and P. Niyogi, “Locality Preserving Projections,” Advances in Neural Information Processing Systems 16, MIT Press, 2003.
[11] D. Heckerman, D. Geiger, and D.M. Chickering, “Learning Bayesian Networks: The Combination of Knowledge and Statistical Data,” Machine Learning, vol. 20, pp. 197243, 1995.
[12] I.T. Jolliffe, Principal Components Analysis. SpringerVerlag, 1986.
[13] R. Kannan et al., “On Clusterings: Good, Bad and Spectral,” Proc. 41st Symp. Foundation of Computer Science, pp. 367377, 2000.
[14] Y. Kesselman, A. Shokoufandeh, M. Demerici, and S. Dickinson, “ManytoMany Graph Matching via Metric Embedding,” Proc. IEEE Conf. Computer Vision and Pattern Recognition, pp. 850857, 2003.
[15] B.B. Kimia, A.R. Tannenbaum, and S.W. Zucker, “Shapes, Shocks, and Deformations I. The Components of 2Dimensional Shape and the ReactionDiffusion Space,” Int'l J. Computer Vision, vol. 15, pp. 189224, 1995.
[16] S. Kosinov and T. Caelli, “Inexact Multisubgraph Matching Using Graph Eigenspace and Clustering Models,” Proc. Joint IAPR Int'l Workshops Structural, Syntactic, and Statistical Pattern Recognition, SSPR 2002 and SPR 2002, pp. 133142, 2002.
[17] L. Lovasz, “Random Walks on Graphs: A Survey,” Bolyai Soc. Math. Studies, vol. 2, pp. 146, 1993.
[18] B. Luo and E.R. Hancock, “Structural Matching Using the EM Algorithm and Singular Value Decomposition,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 23, pp. 11201136, 2001.
[19] B. Luo, A. Torsello, A. RoblesKelly, R.C. Wilson, and E.R. Hancock, ”A Probabilistic Framework for Graph Clustering,” Proc. IEEE Conf. Computer Vision and Pattern Recognition, pp. 912919, 2001.
[20] B. Luo, R.C. Wilson, and E.R. Hancock, “Eigenspaces for Graphs,” Int'l J. Image and Graphics, vol. 2, pp. 247268, 2002.
[21] B. Mohar, “Laplace Eigenvalues of Graphs— A Survey,” Discrete Math., vol. 109, pp. 171183, 1992.
[22] A. Munger, H. Bunke, and X. Jiang, “Combinatorial Search vs. Genetic Algorithms: A Case Study Based on the Generalized Median Graph Problem,” Pattern Recognition Letters, vol. 20, pp. 12711279, 1999.
[23] M. Pavan and M. Pelillo, “Dominant Sets and Hierarchical Clustering,” Proc. Ninth IEEE Int'l Conf. Computer Vision, vol. I, pp. 362369, 2003.
[24] P. Perona and W.T. Freeman, “A Factorization Approach to Grouping,” Proc. European Conf. Computer Vision, pp. 655670, 1998.
[25] S. Rizzi, “Genetic Operators for Hierarchical Graph Clustering,” Pattern Recognition Letters, vol. 19, pp. 12931300, 1998.
[26] A. RoblesKelly and E.R. Hancock, “An ExpectationMaximisation Framework for Segmentation and Grouping,” Image and Vision Computing, vol. 20, pp. 725738, 2002.
[27] A. RoblesKelly and E.R. Hancock, “Edit Distance from Graph Spectra,” Proc. Ninth IEEE Int'l Conf. Computer Vision, vol. I, pp. 127135, 2003.
[28] S. Roweis and L. Saul, “NonLinear Dimensionality Reduction by Locally Linear Embedding,” Science, vol. 299, pp. 23232326, 2002.
[29] S. Sarkar and K.L. Boyer, “Quantitative Measures of Change Based on Feature Organization: Eigenvalues and Eigenvectors,” Computer Vision and Image Understanding, vol. 71, pp. 110136, 1998.
[30] G.L. Scott and H.C. LonguetHiggins, “Feature Grouping by Relocalisation of Eigenvectors of the Proximity Matrix,” Proc. British Machine Vision Conf., pp. 103108, 1990.
[31] J. Segen, “Learning Graph Models of Shape,” Proc. Fifth Int'l Conf. Machine Learning, J. Laird, ed., pp. 2925, 1988.
[32] K. Sengupta and K.L. Boyer, “Organizing Large Structural Modelbases,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 17, 1995.
[33] J. Shi and J. Malik, “Normalized Cuts and Image Segmentation,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 22, pp. 888905, 2000.
[34] A. Shokoufandeh, S. Dickinson, K. Siddiqi, and S. Zucker, “Indexing Using a Spectral Coding of Topological Structure,” Proc. IEEE Conf. Computer Vision and Pattern Recognition, pp. 491497, 1999.
[35] K. Siddiqi, A. Shokoufandeh, S.J. Dickinson, and S.W. Zucker, “Shock Graphs and Shape Matching,” Int'l J. Computer Vision, vol. 35, pp. 1332, 1999.
[36] J.B. Tenenbaum, V.D. Silva, and J.C. Langford, “A Global Geometric Framework for NonLinear Dimensionality Reduction,” Science, vol. 290, pp. 586591, 2000.
[37] A. Torsello and E.R. Hancock, “A Skeletal Measure of 2D Shape Similarity,” Proc. Fourth Int'l Workshop Visual Form, pp. 594605, 2001.
[38] S. Umeyama, “An Eigen Decomposition Approach to Weighted Graph Matching Problems,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 10, pp. 695703, 1988.
[39] B.J. van Wyk and M.A. van Wyk, “Kronecker Product Graph Matching,” Pattern Recognition, vol. 39, no. 9, pp. 20192030, 2003.
[40] A.K.C. Wong, J. Constant, and M.L. You, “Random Graphs,” Syntactic and Structural Pattern Recognition, World Scientific, 1990.