
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
Simon M. Lucas, T. Jeff Reynolds, "Learning Deterministic Finite Automata with a Smart State Labeling Evolutionary Algorithm," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 27, no. 7, pp. 10631074, July, 2005.  
BibTex  x  
@article{ 10.1109/TPAMI.2005.143, author = {Simon M. Lucas and T. Jeff Reynolds}, title = {Learning Deterministic Finite Automata with a Smart State Labeling Evolutionary Algorithm}, journal ={IEEE Transactions on Pattern Analysis and Machine Intelligence}, volume = {27}, number = {7}, issn = {01628828}, year = {2005}, pages = {10631074}, doi = {http://doi.ieeecomputersociety.org/10.1109/TPAMI.2005.143}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Pattern Analysis and Machine Intelligence TI  Learning Deterministic Finite Automata with a Smart State Labeling Evolutionary Algorithm IS  7 SN  01628828 SP1063 EP1074 EPD  10631074 A1  Simon M. Lucas, A1  T. Jeff Reynolds, PY  2005 KW  Index Terms Grammatical inference KW  finite state automata KW  random hill climber KW  evolutionary algorithm. VL  27 JA  IEEE Transactions on Pattern Analysis and Machine Intelligence ER   
[1] P.J. Angeline, G.M. Saunders, and J.P. Pollack, “An Evolutionary Algorithm that Constructs Recurrent Neural Networks,” IEEE Trans. Neural Networks, vol. 5, no. 1, pp. 5465, Jan. 1994.
[2] H.G. Beyer, “Toward a Theory of Evolution Strategies: The (mu, lambda)Theory,” Evolutionary Computation, vol. 2, no. 4, pp. 381407, 1994.
[3] O. Cicchello and S.C. Kremer, “Beyond EDSM,” Proc. Int'l Colloquium Grammatical Inference, vol. 2484, pp. 3748, 2002.
[4] O. Cicchello and S.C. Kremer, “Inducing Grammars from Sparse Data Sets: A Survey of Algorithms and Results,” J. Machine Learning Research, vol. 4 pp. 603632, 2003.
[5] P. Dupont, “Regular Grammatical Inference from Positive and Negative Samples by Genetic Search: The GIG Method,” Proc. Grammatical Inference and Applications: Second Int'l Colloquium (ICGI94), R.C. Carrasco and J. Oncina, eds., pp. 236245, 1994.
[6] P. Dupont, L. Miclet, and E. Vidal, “ What Is the Search Space of the Regular Inference?” Proc. Grammatical Inference and Applications: Second Int'l Colloquium (ICGI94), R.C. Carrasco and J. Oncina, eds., pp. 2537, 1994.
[7] C. Giles, G. Sun, H. Chen, Y. Lee, and D. Chen, “Higher order Recurrent Neural Networks and Grammatical Inference,” Advances in Neural Information Processing Systems 2, D. Touretzky, ed., pp. 380387, San Mateo, Calif.: Morgan Kaufman, 1990.
[8] J. Gomez, “An Incremental Learning Algorithm for Deterministic Finite Automata Using Evolutionary Algorithms (Gecco 2004 Noisy DFA Entry),” Proc. Genetic and Evolutionary Computation Conf., http://cswww.essex.ac.uk/staff/sml/gecco/ results/NoisyDFA/entries/gomezGomez.pdf , 2004.
[9] H. Juille and J.B. Pollack, “A SamplingBased Heuristic for Tree Search Applied to Grammar Induction,” Proc. 15th Nat'l Conf. Artificial Intelligence, pp. 776783, 1998.
[10] M. Kearns and L.G. Valiant, “Cryptographic Limitations on Learning Boolean Formulae and Finite Automata,” Proc. ACM Symp. Theory of Computation, pp. 433444, 1989.
[11] K. Lang, “EvidenceDriven State Merging with Search,” NECI Technical Report TR98139, citeseer.nj.nec.comlang98 evidence.html, 1998.
[12] K.J. Lang, “Random DFAs Can Be Approximately Learned from Sparse Uniform Examples,” Proc. Fifth ACM Workshop Computational Learning Theory, pp. 4552, 1992.
[13] K.J. Lang, B. Pearlmutter, and F. Coste, “The Gowachin Server,” http://www.irisa.fr/Gowachin, 2005.
[14] K.J. Lang, B.A. Pearlmutter, and R.A. Price, “Results of the Abbadingo One DFA Learning Competition and a New EvidenceDriven State Merging Algorithm,” Proc. Int'l Colloquium Grammatical Inference, pp. 112, 1998.
[15] M. Lankhorst, “A Genetic Algorithm for Induction of NonDeterministic Pushdown Automata,” Computer Science Report CSR 9502, Univ. of Groningen, http://www.ub.rug.nl/eldoc/dis/science/m.m.lankhorst c4.pdf, 1995.
[16] S. Lucas, “Gecco 2004 Noisy DFA Results,” Proc. Genetic and Evolutionary Computation Conf., http://cswww.essex.ac.uk/staff/sml/gecco/ results/NoisyDFANoisyDFAResults.html, 2004.
[17] S.M. Lucas, “Structuring Chromosomes for ContextFree Grammar Evolution,” Proc. IEEE Int'l Conf. Evolutionary Computation, pp. 130135, 1994.
[18] S.M. Lucas, “Evolving Finite State Transducers: Some Initial Explorations,” Proc. Sixth European Conf. Genetic Programming, pp. 130141, 2003.
[19] S.M. Lucas and T.J. Reynolds, “Learning DFA: Evolution versus Evidence Driven State Merging,” Proc. Congress Evolutionary Computation, pp. 351358, 2003.
[20] S. Luke, S. Hamahashi, and H. Kitano, “‘Genetic’ Programming,” Proc. Genetic and Evolutionary Computation Conf., W. Banzhaf et al., eds., pp. 10981105, 1999.
[21] M. Mitchell, An Introduction to Genetic Algorithms. Cambridge, Mass.: MIT Press, 1996.
[22] M. Mitchell, J. Holland, and S. Forrest, “When Will a Genetic Algorithm Outperform Hill Climbing?” Advances in Neural Information Processing Systems 6, J. Cowan, G. Tesauro, and J. Alspector, eds., pp. 5158, San Mateo, Calif.: Morgan Kaufman, 1994.
[23] A.L. Oliveira and J.P.M. Silva, “Efficient Search Techniques for the Inference of Minimum Size Finite Automata,” String Processing and Information Retrieval, pp. 8189, 1998.
[24] J. Oncina and P. Garcia, “Inferring Regular Languages in Polynomial Updated Time,” Pattern Recognition and Image Analysis, pp. 4961, 1992.
[25] L. Pitt and M. Warmuth, “The Minimum Consistent DFA Problem Cannot Be Approximated within Any Polynomial,” J. ACM, vol. 40, no. 1, pp. 95142, 1993.
[26] J.D. Schaffer, D. Whitley, and L.J. Eshelman, “Combinations of Genetic Algorithms and Neural Networks: A Survey of the State of the Art,” Proc. Int'l Workshop Combinations of Genetic Algorithms and Neural Networks, D. Whitley and J. D. Schaffer, eds., pp. 137, 1992.
[27] M. Sebban and J. Janodet, “On State Merging in Grammatical Inference: A Statistical Approach for Dealing with Noisy Data,” Proc. Int'l Conf. Machine Learning (ICML), 2003.
[28] M. Sebban, J. Janodet, and F. Tantini, “BLUE*: a BlueFringe Procedure for Learning DFA with Noisy Data (Gecco 2004 Noisy DFA Entry),” Proc. Genetic and Evolutionary Computation Conf., http://cswww.essex.ac.uk/staff/sml/gecco/ results/NoisyDFA/entries/blueBlueFringe.pdf , 2004.
[29] M. Tomita, “Dynamic Construction of Finite Automata from Examples Using Hill Climbing,” Proc. Fourth Ann. Cognitive Science Conf., pp. 105108, 1982.
[30] B.A. Trakhtenbrot and Y.M. Barzdin, Finite Automata. Amsterdam: NorthHolland, 1973.
[31] R. Watrous and G. Kuhn, “Induction of FiniteState Automata Using SecondOrder Recurrent Networks,” Advances in Neural Information Processing Systems 4, J. Moody, S. Hanson, and R. Lippmann, eds., pp. 309316, San Mateo, Calif.: Morgan Kaufman, 1992.
[32] P. Wyard, “ContextFree Grammar Induction Using Genetic Algorithms,” Proc. Fourth Int'l Conf. Genetic Algorithms, R. Belew and L. Booker, eds., pp. 514518, 1991.