The Community for Technology Leaders
RSS Icon
Subscribe
Issue No.04 - April (2005 vol.27)
pp: 590-602
Xiuwen Liu , IEEE
ABSTRACT
Using a differential-geometric treatment of planar shapes, we present tools for: 1) hierarchical clustering of imaged objects according to the shapes of their boundaries, 2) learning of probability models for clusters of shapes, and 3) testing of newly observed shapes under competing probability models. Clustering at any level of hierarchy is performed using a mimimum variance type criterion criterion and a Markov process. Statistical means of clusters provide shapes to be clustered at the next higher level, thus building a hierarchy of shapes. Using finite-dimensional approximations of spaces tangent to the shape space at sample means, we (implicitly) impose probability models on the shape space, and results are illustrated via random sampling and classification (hypothesis testing). Together, hierarchical clustering and hypothesis testing provide an efficient framework for shape retrieval. Examples are presented using shapes and images from ETH, Surrey, and AMCOM databases.
INDEX TERMS
Shape analysis, shape statistics, shape learning, shape testing, shape retrieval, shape clustering.
CITATION
Anuj Srivastava, Shantanu H. Joshi, Washington Mio, Xiuwen Liu, "Statistical Shape Analysis: Clustering, Learning, and Testing", IEEE Transactions on Pattern Analysis & Machine Intelligence, vol.27, no. 4, pp. 590-602, April 2005, doi:10.1109/TPAMI.2005.86
16 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool