This Article 
   
 Share 
   
 Bibliographic References 
   
 Add to: 
 
Digg
Furl
Spurl
Blink
Simpy
Google
Del.icio.us
Y!MyWeb
 
 Search 
   
Estimating Degradation Model Parameters Using Neighborhood Pattern Distributions: An Optimization Approach
April 2004 (vol. 26 no. 4)
pp. 520-524

Abstract—Noise models are crucial for designing image restoration algorithms, generating synthetic training data, and predicting algorithm performance. There are two related but distinct estimation scenarios. The first is model calibration, where it is assumed that the input ideal bitmap and the output of the degradation process are both known. The second is the general estimation problem, where only the image from the output of the degradation process is given. While researchers have addressed the problem of calibration of models, issues with the general estimation problems have not been addressed in the literature. In this paper, we describe a parameter estimation algorithm for a morphological, binary, page-level image degradation model. The inputs to the estimation algorithm are 1) the degraded image and 2) information regarding the font type (italic, bold, serif, sans serif). We simulate degraded images using our model and search for the optimal parameter by looking for a parameter value for which the local neighborhood pattern distributions in the simulated image and the given degraded image are most similar. The parameter space is searched using a direct search optimization algorithm. We use the p{\hbox{-}}\rm value of the Kolmogorov-Smirnov test as the measure of similarity between the two neighborhood pattern distributions. We show results of our algorithm on degraded document images.

[1] H. Baird, Document Image Defect Models Proc. IAPR Workshop Syntactic and Structural Pattern Recognition, pp. 38-46, June 1990.
[2] H.S. Baird, Document Image Quality: Making Fine Discriminations Proc.Int'l Conf. Document Analysis and Recognition, pp. 459-462, Sept. 1999.
[3] A.J. Booker, J.E. Dennis, P.D. Frank, D.B. Serafini, V. Torczon, and M.W. Trosset, Optimization Using Surrogate Objectives on a Helicopter Test Example. pp. 49-58, 1998.
[4] A.J. Booker, J.E. Dennis, P.D. Frank, D.B. Serafini, V. Torczon, and M.W. Trosset, A Rigorous Framework for Optimization of Expensive Functions by Surrogates, Structural Optimization, vol. 17, pp. 1-13, 1999.
[5] P.E. Gill, W. Murray, and M.H. Wright, Practical Optimization. London and New York: Academic Press, 1993.
[6] R.M. Haralick and L.G. Shapiro, Robot and Computer Vision, vols. 1 and 2, Reading, Mass.: Addison-Wesley, 1992.
[7] T. Kanungo and R.M. Haralick, Morphological Degradation Parameter Estimation Proc. SPIE Conf. Nonlinear Image Processing, vol. 2424, pp. 86-95, Feb. 1995.
[8] T. Kanungo, R.M. Haralick, H. Baird, W. Stuezle, and D. Madigan, A Statistical, Nonparametric Methodology for Document Degradation Model Validation IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 22, pp. 1209-1223, 2000.
[9] T. Kanungo, R.M. Haralick, H.S. Baird, W. Stuetzle, and D. Madigan, Document Degradation Models: Parameter Estimation and Model Validation Proc. Int'l Workshop Machine Vision Applications, Dec. 1994.
[10] T. Kanungo, R.M. Haralick, and I. Phillips, “Global and Local Document Degradation Models,” Proc. Second Int'l Conf. Document Analysis and Recognition, pp. 730-734, Oct. 1993.
[11] T. Kanungo, R.M. Haralick, and I. Phillips, Non-Linear Local and Global Document Degradation Models Int'l J. Imaging Systems and Technology, vol. 5, pp. 220-230, 1994.
[12] T. Kanungo and Q. Zheng, Estimation of Morphological Degradation Model Parameters Proc. IEEE Int'l Conf. Speech and Signal Processing, May 2001.
[13] R.M. Lewis, V. Torczon, and M.W. Trosset, Why Pattern Search Works OPTIMA, vol. 59, pp. 1-7, 1998.
[14] Y. Li, D. Lopresti, and A. Tomkins, “Validation of Document Defect Models,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 18, pp. 99-107, 1996.
[15] F.J. Massey, The Kolmogorov-Smirnov Test for Goodness J. Am. Statistical Assoc., vol. 46, pp. 68-78, 1951.
[16] J. Nelder and R. Mead, A Simplex Method for Function Minimization Computer J., vol. 7, pp. 308-313, 1965.
[17] M.J.D. Powell, Direct Search Algorithms for Optimization Calculations. vol. 7, pp. 287-336, 1998.
[18] S. Sural and P.K. Das, A Two-State Markov Chain Model of Degraded Document Images Proc. Int'l Conf. Document Analysis and Recognition, pp. 463-466, Sept. 1999
[19] M.H. Wright, Direct Search Methods: Once Scorned, Now Respectable Numerical Analysis, pp. 191-208. D.F. Griffiths and G.A. Watson, eds., Addison Wesley, Longman (Harlow), 1996.
[20] Q. Zheng and T. Kanungo, Morphological Degradation Models and Their Use in Document Image Restoration Proc. IEEE Int'l Conf. Image Processing, Oct. 2001.

Index Terms:
Degradation models, parameter estimation, direct search algorithms, neighborhood pattern distributions.
Citation:
Tapas Kanungo, Qigong Zheng, "Estimating Degradation Model Parameters Using Neighborhood Pattern Distributions: An Optimization Approach," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 26, no. 4, pp. 520-524, April 2004, doi:10.1109/TPAMI.2004.1265867
Usage of this product signifies your acceptance of the Terms of Use.