The Community for Technology Leaders
RSS Icon
Subscribe
Issue No.04 - April (2004 vol.26)
pp: 495-508
ABSTRACT
<p><b>Abstract</b>—This paper proposes an efficient error-tolerant approach to retrieving sign words from a Taiwanese Sign Language (TSL) database. This database is tagged with visual gesture features and organized as a multilist code tree. These features are defined in terms of the visual characteristics of sign gestures by which they are indexed for sign retrieval and displayed using an anthropomorphic interface. The maximum a posteriori estimation is exploited to retrieve the most likely sign word given the input feature sequence. An error-tolerant mechanism based on mutual information criterion is proposed to retrieve a sign word of interest efficiently and robustly. A user-friendly anthropomorphic interface is also developed to assist learning TSL. Several experiments were performed in an educational environment to investigate the system's retrieval accuracy. Our proposed approach outperformed a dynamic programming algorithm in its task and shows tolerance to user input errors.</p>
INDEX TERMS
Taiwanese Sign Language, alternative and augmentative communication, error tolerant retrieval, gesture feature.
CITATION
Chung-Hsien Wu, Yu-Hsien Chiu, Kung-Wei Cheng, "Error-Tolerant Sign Retrieval Using Visual Features and Maximum A Posteriori Estimation", IEEE Transactions on Pattern Analysis & Machine Intelligence, vol.26, no. 4, pp. 495-508, April 2004, doi:10.1109/TPAMI.2004.1265864
25 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool