This Article 
   
 Share 
   
 Bibliographic References 
   
 Add to: 
 
Digg
Furl
Spurl
Blink
Simpy
Google
Del.icio.us
Y!MyWeb
 
 Search 
   
Spectral Grouping Using the Nyström Method
February 2004 (vol. 26 no. 2)
pp. 214-225

Abstract—Spectral graph theoretic methods have recently shown great promise for the problem of image segmentation. However, due to the computational demands of these approaches, applications to large problems such as spatiotemporal data and high resolution imagery have been slow to appear. The contribution of this paper is a method that substantially reduces the computational requirements of grouping algorithms based on spectral partitioning making it feasible to apply them to very large grouping problems. Our approach is based on a technique for the numerical solution of eigenfunction problems known as the Nyström method. This method allows one to extrapolate the complete grouping solution using only a small number of samples. In doing so, we leverage the fact that there are far fewer coherent groups in a scene than pixels.

[1] D. Achlioptas, F. McSherry, and B. Schölkopf, Sampling Techniques for Kernel Methods Proc. Neural Information Processing Systems Conf., pp. 335-342, 2002.
[2] E.H. Adelson and J.R. Bergen, Spatiotemporal Energy Models for the Perception of Motion J. Optical Society Am. A, vol. 2, no. 2, pp. 284-299, 1985.
[3] C.T.H. Baker, The Numerical Treatment of Integral Equations. Oxford: Clarendon Press, 1977.
[4] S. Belongie, C. Fowlkes, F. Chung, and J. Malik, Spectral Partitioning with Indefinite Kernels Using the Nyström Extension Proc. European Conf. Computer Vision, 2002.
[5] C. Berg, J.P.R. Christensen, and P. Ressel, Harmonic Analysis on Semigroups. Springer-Verlag, 1984.
[6] C.M. Bishop, Neural Networks for Pattern Recognition. Oxford Univ. Press, 1995.
[7] R.C. Bolles, H.H. Baker, and D.H. Marimont, Epipolar-Plane Image Analysis: An Approach to Determining Structure from Motion Int'l. J. Computer Vision, vol. 1, pp. 7-55, 1987.
[8] K. Boyer, D. Fagerström, M. Kubovy, P. Johansen, and S. Sarkar, POCV99 Breakout Session Report: Spatiotemporal Grouping Perceptual Organization for Artificial Vision Systems, S. Sarkar and K.L. Boyer, eds., 2000.
[9] J.M. Buhmann, Data Clustering and Learning The Handbook of Brain Theory and Neural Networks, M.A. Arbib, ed., pp. 278-281, 1995.
[10] O. Chapelle, P. Haffner, and V. Vapnik, "SVMs for Histogram-Based Image Classification," IEEE Trans. Neural Networks, vol. 10, no. 5, 1999, pp. 1075—1090.
[11] F.R.K. Chung, Spectral Graph Theory. Am. Math. Soc., 1997.
[12] C. Fowlkes, S. Belongie, and J. Malik, Efficient Spatiotemporal Grouping Using the Nystrom Method Proc. IEEE Conf. Computer Vision and Pattern Recognition (CVPR), vol. I, pp. 231-238, 2001.
[13] A. Frieze and R. Kannan, Quick Approximation to Matricies and Applications Combinatorica, vol. 19, pp. 175-220, 1999.
[14] A. Frieze, R. Kannan, and S. Vempala, “Fast Monte-Carlo Algorithms for Finding Low-Rank Approximations,” Proc. ACM Symp. Foundations of Computer Science, 1998.
[15] Y. Gdalyahu, D. Weinshall, and M. Werman, “Stochastic Image Segmentation by Typical Cuts,” Proc. IEEE Conf. Computer Vision and Pattern Recognition, Fort Collins, Colo., 1999.
[16] S. Gepshtein and M. Kubovy, The emergence of visual objects in space-time Nat'l Academy of Science USA, vol. 97, no. 14, pp. 8186-8191, 2000.
[17] D. Haussler, Convolution Kernels on Discrete Structure technical report, Univ. of California at Santa Cruz, 1999.
[18] J. Malik, S. Belongie, T. Leung, and J. Shi, Contour and Texture Analysis for Image Segmentation Int'l. J. Computer Vision, vol. 43, no. 1, pp. 7-27, June 2001.
[19] S. Mika, B. Schölkopf, A.J. Smola, K.-R. Müller, M. Scholz, and G. Rätsch, Kernel PCA and De-Noising in Feature Spaces Advances in Neural Information Processing Systems 11, pp. 536-542, 1999.
[20] A.Y. Ng, M.I. Jordan, and Y. Weiss, On Spectral Clustering: Analysis and an Algorithm Proc. Neural Information Processing Systems Conf., 2002.
[21] E.J. Nyström, Über die Praktische Auflösung von Linearen Integralgleichungen mit Anwendungen auf Randwertaufgaben der Potentialtheorie Commentationes Physico-Mathematicae, vol. 4, no. 15, pp. 1-52, 1928.
[22] P. Perona and W.T. Freeman, A Factorization Approach to Grouping Proc. Fifth European Conf. Computer Vision, 1998.
[23] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, Numerical Recipies in C, second ed. Cambridge Univ. Press, 1992.
[24] J. Puzicha and S. Belongie, Model-Based Halftoning for Color Image Segmentation Proc. Int'l Conf. Pattern Recognition, vol. 3, pp. 629-632, 2000.
[25] J. Puzicha, T. Hoffman, and J.M. Buhmann, “Non-Parametric Similarity Measures for Unsupervised Texture Segmentation and Image Retrieval,” Proc. Computer Vision and Pattern Recognition, 1997.
[26] S. Sarkar and K.L. Boyer, “Quantitative Measures of Change Based on Feature Organization: Eigenvalues and Eigenvectors,” Proc. IEEE CS Conf. Computer Vision and Pattern Recognition, pp. 478-483, June 1996.
[27] B. Schölkopf, A. Smola, and K.-R. Müller, Nonlinear Component Analysis as a Kernel Eigenvalue Problem Neural Computation, vol. 10, pp. 1299-1319, 1998.
[28] G.L. Scott and H.C. Longuet-Higgins, An Algorithm for Associating the Features of Two Images Proc. Royal Soc. London, vol. B-244, pp. 21-26, 1991.
[29] J. Shi and J. Malik, Motion Segmentation and Tracking Using Normalized Cuts Proc. Sixth Int'l Conf. Computer Vision (ICCV '98), pp. 1154-1160, 1998.
[30] J. Shi and J. Malik, Normalized Cuts and Image Segmentation IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 22, no. 8, pp. 888-905, Aug. 2000.
[31] Y. Weiss, "Smoothness in Layers: Motion Segmentation Using Nonparametric Mixture Estimation," Proc. IEEE Conf. Computer Vision and Pattern Recognition, pp. 520-527, 1997.
[32] Y. Weiss, Segmentation Using Eigenvectors: A Unifying View Proc. Int'l Conf. Computer Vision, vol. 2, pp. 975-982, 1999.
[33] Y. Weiss and E. Adelson, “A Unified Mixture Framework for Motion Segmentation: Incorporating Spatial Coherence and Estimating the Number of Models,” Proc. IEEE Computer Soc. Conf. Computer Vision and Pattern Recognition, pp. 321-326, 1996.
[34] C. Williams and M. Seeger, Using the Nyström Method to Speed Up Kernel Machines Advances in Neural Information Processing Systems 13: Proc. 2000 Conf., T.K. Leen, T.G. Dietterich, and V. Tresp, eds., pp. 682-688, 2001.

Index Terms:
Image and video segmentation, normalized cuts, spectral graph theory, clustering, Nyström approximation.
Citation:
Charless Fowlkes, Serge Belongie, Fan Chung, Jitendra Malik, "Spectral Grouping Using the Nyström Method," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 26, no. 2, pp. 214-225, Feb. 2004, doi:10.1109/TPAMI.2004.1262185
Usage of this product signifies your acceptance of the Terms of Use.