The Community for Technology Leaders
RSS Icon
Subscribe
Issue No.01 - January (2004 vol.26)
pp: 118-123
ABSTRACT
<p><b>Abstract</b>—Implicit representations of curves have certain advantages over explicit representation, one of them being the ability to determine with ease whether a point is inside or outside the curve (<it>inside-outside functions</it>). However, save for some special cases, it is not known how to construct implicit representations which are guaranteed to preserve the curve's topology. As a result, points may be erroneously classified with respect to the curve. The paper offers to overcome this problem by using a representation which is guaranteed to yield the correct topology of a simple closed curve by using homeomorphic mappings of the plane to itself. If such a map carries the curve onto the unit circle, then a point is inside the curve if and only if its image is inside the unit circle.</p>
INDEX TERMS
Implicit fitting, topologically faithful fitting, Jordan-Schoenflies theorem.
CITATION
Daniel Keren, "Topologically Faithful Fitting of Simple Closed Curves", IEEE Transactions on Pattern Analysis & Machine Intelligence, vol.26, no. 1, pp. 118-123, January 2004, doi:10.1109/TPAMI.2004.10006
14 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool