This Article 
   
 Share 
   
 Bibliographic References 
   
 Add to: 
 
Digg
Furl
Spurl
Blink
Simpy
Google
Del.icio.us
Y!MyWeb
 
 Search 
   
Estimating Piecewise-Smooth Optical Flow with Global Matching and Graduated Optimization
December 2003 (vol. 25 no. 12)
pp. 1625-1630

Abstract—This paper presents a new method for estimating piecewise-smooth optical flow. We propose a global optimization formulation with three-frame matching and local variation and develop an efficient technique to minimize the resultant global energy. This technique takes advantage of local gradient, global gradient, and global matching methods and alleviates their limitations. Experiments on various synthetic and real data show that this method achieves highly competitive accuracy.

[1] A. Bab-Hadiashar and D. Suter, Robust Optical Flow Estimation Int'l J. Computer Vision, vol. 29, no. 1, pp. 59-77, 1998.
[2] J.L. Barron, D.J. Fleet, and S.S. Beauchemin, “Performance of Optical Flow Techniques,” Int'l J. Computer Vision, vol. 12, no. 1, pp. 43–77, 1994.
[3] R. Battiti, E. Amaldi, and C. Koch, Computing Optical Flow Across Multiple Scales: An Adaptive Coarse-to-Fine Strategy Int'l J. Computer Vision, vol. 6, no. 2, pp. 133-145, 1991.
[4] J.R. Bergen, P. Anandan, K.J. Hanna, and R. Hingorani, “Hiercharchical Model-Based Motion Estimation,” Proc. European Conf. Computer Vision, pp. 237-252, 1992.
[5] M. Black and P. Anandan, The Robust Estimation of Multiple Motions: Parametric and Piecewise-Smooth Flow Fields J. Computer Vision and Image Understanding, vol. 63, no. 1, pp. 75-104, 1996.
[6] M.J. Black, “Robust Incremental Optical Flow,” PhD thesis, Yale Univ., Sept. 1992.
[7] M. Black, G. Sapiro, D. Marimont, and D. Heeger, “Robust Anisotropic Diffusion,” IEEE Trans. Image Processing, vol. 7, no. 3, pp. 421-432, 1998.
[8] A. Blake and A. Zisserman, Visual Reconstruction. MIT Press, 1987.
[9] Y. Boykov, O. Veksler, and R. Zabih, Fast Approximate Energy Minimization via Graph Cuts IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 23, no. 11, pp. 1222-1239, Nov. 2001.
[10] R. Depommier and E. Dubois, Motion Estimation With Detection of Occlusion Areas Proc. Int'l Conf. Acoustics, Speech, and Signal Processing, vol. 3, pp. 269-272, 1992.
[11] G. Farnebäck, Very High Accuracy Velocity Estimation Using Orientation Tensors, Parametric Motion, and Simultaneous Segmentation of the Motion Field Proc. Int'l Conf. Computer Vision, vol. 1, pp. 171-177, 2001.
[12] D.J. Fleet and A.D. Jepson, “Computation of Component Image Velocity from Local Phase Information,” Int'l J. Computer Vision, vol. 5, no. 1, pp. 77-104, 1990.
[13] B. Galvin, B. McCane, K. Novins, D. Mason, and S. Mills, Recovering Motion Fields: An Evaluation of Eight Optical Flow Algorithms Proc. British Machine Vision Conf., 1998.
[14] R.M. Haralick and L.G. Shapiro, Computer and Robot Vision. New York: Addison-Wesley, 1993.
[15] F. Heitz and P. Bouthemy, Multimodal Estimation of Discontinuous Optical Flow Using Markov Random Fields IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 15, no. 12, pp. 1217-1232, Dec. 1993.
[16] J. Jain and A. Jain, Displacement Measurement and Its Application in Interframe Image Coding IEEE Trans. Comm., vol. 29, no. 12, pp. 1799-1808, 1981.
[17] S.X. Ju, M.J. Black, and A.D. Jepson, Skin and Bones: Multi-Layer, Locally Affine, Optical Flow and Regularization with Transparency Proc. IEEE Conf. Computer Vision and Pattern Recognition, pp. 307-314, 1996.
[18] S. Kang, R. Szeliski, and J. Chai, Handling Occlusions in Dense Multi-View Stereo Proc. Conf. Computer Vision and Pattern Recognition, vol. 1, pp. 103-110, 2001.
[19] J. Konrad and E. Dubois, Bayesian Estimation of Motion Vector Fields IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 14, no. 9, pp. 910-927, Sept. 1992.
[20] K. Lim, A. Das, and M. Chong, Estimation of Occlusion and Dense Motion Fields in a Bidirectional Bayesian Framework IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 24, no. 5 pp. 712-718, May 2002.
[21] E. Memin and P. Pérez, Dense Estimation and Object-Based Segmentation of the Optical Flow with Robust Techniques IEEE Trans. Image Processing, vol. 7, no. 5, pp. 703-719, 1998.
[22] D. Murray and B. Buxton, Scene Segmentation from Visual Motion Using Global Optimization IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 9, no. 2, pp. 220-228, Feb. 1987.
[23] W. Press, S. Teukolsky, W. Vetterling, and B. Flannery, Numerical Recipes in C, second ed. Cambridge Univ. Press, 1997.
[24] P. Rousseeuw and A. Leory, Robust Regression and Outlier Detection. Wiley Series in Probability and Statistics, 1987.
[25] J. Odobez and P. Bouthemy, Robust Multiresolution Estimation of Parametric Motion Models J. Visual Comm. and Image Representation, vol. 6, no. 4, pp. 348-365, 1995.
[26] E. Ong and M. Spann, Robust Optical Flow Computation Based on Least-Median-of-Squares Int'l J. Computer Vision, vol. 31, no. 1, pp. 51-82, 1999.
[27] B. Schunck, Image Flow Segmentation and Estimation by Constraint Line Clustering IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 11, no. 10, pp. 1010-1027, Oct. 1989.
[28] D. Shulman and J.Y. Herve, "Regularization of Discontinuous Flow Fields," Proc. Workshop Visual Motion, pp. 81-86, 1989.
[29] D.-G. Sim and R.-H. Park, Robust Reweighted MAP Motion Estimation IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 20, no. 4, pp. 353-365, Apr. 1998.
[30] E.P. Simoncelli, Distributed Analysis and Representation of Visual Motion PhD dissertation, MIT, 1993.
[31] S. Sun, D. Haynor, and Y. Kim, Motion Estimation Based on Optical Flow with Adaptive Gradients Proc. Int'l Conf. Image Processing, vol. 1, pp. 852-855, 2000.
[32] R. Szeliski and J. Coughlan, "Hierarchical spline-based registration," Proc. IEEE Conf. Computer Vision and Pattern Recognition (CVPR),"Seattle, pp. 194-201, June 1994.
[33] H. Tao, H. Sawhney, and R. Kumar, A Global Matching Framework for Stereo Computation Proc. Int'l Conf. Computer Vision, pp. 532-539, 2001.
[34] P. Torr, Geometric Motion Segmentation and Model Selection Proc. The Royal Soc. of London, J. Lasenby, et al., eds., pp. 1321-1340, 1998.
[35] P.S. Torr, R. Szeliski, and P. Anandan, “An Integrated Bayesian Approach to Layer Extraction from Image Sequences,” Proc. Int'l Conf. Computer Vision, 1999.
[36] Y. Weiss and W. Freeman, Correctness of Belief Propagation in Gaussian Graphical Models of Arbitrary Topology Neural Comp., vol. 13, no. 10, pp. 2173-200, 2001.
[37] M. Ye and R. Haralick, Image Flow Estimation Using Facet Model and Covariance Propagation Vision Interface: Real World Applications of Computer Vision, M. Cheriet and Y.H. Yang, eds., pp. 209-241, 2000.
[38] M. Ye and R. Haralick, Optical Flow From a Least-Trimmed Squares Based Adaptive Approach Proc. Int'l Conf. Pattern Recognition, vol. 3, pp. 1052-1055, 2000.
[39] M. Ye and R. Haralick, Local Gradient Global Matching Piecewise Smooth Optical Flow Proc. Computer Vision and Pattern Recognition, vol. 2 pp. 712-717, 2001.
[40] M. Ye, R. Haralick, and L. Shapiro, Estimating Optical Flow Using a Global Matching Formulation and Graduated Optimization Proc. Int'l Conf. Image Processing, 2002.
[41] M. Ye, Robust Visual Motion Analysis: Piecewise-Smooth Optical Flow and Motion-Based Detection and Tracking PhD dissertation, Univ. of Washington, 2002, .

Index Terms:
Optical flow, motion discontinuity, occlusion, energy minimization.
Citation:
Ming Ye, Robert M. Haralick, Linda G. Shapiro, "Estimating Piecewise-Smooth Optical Flow with Global Matching and Graduated Optimization," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 25, no. 12, pp. 1625-1630, Dec. 2003, doi:10.1109/TPAMI.2003.1251156
Usage of this product signifies your acceptance of the Terms of Use.