This Article 
   
 Share 
   
 Bibliographic References 
   
 Add to: 
 
Digg
Furl
Spurl
Blink
Simpy
Google
Del.icio.us
Y!MyWeb
 
 Search 
   
Hidden Markov Measure Field Models for Image Segmentation
November 2003 (vol. 25 no. 11)
pp. 1380-1387

Abstract—Parametric image segmentation consists of finding a label field that defines a partition of an image into a set of nonoverlapping regions and the parameters of the models that describe the variation of some property within each region. A new Bayesian formulation for the solution of this problem is presented, based on the key idea of using a doubly stochastic prior model for the label field, which allows one to find exact optimal estimators for both this field and the model parameters by the minimization of a differentiable function. An efficient minimization algorithm and comparisons with existing methods on synthetic images are presented, as well as examples of realistic applications to the segmentation of Magnetic Resonance volumes and to motion segmentation.

[1] J. Besag, Spatial Interaction and the Statistical Analysis of Lattice Systems J. Royal Statistical Soc. B, vol. 36, no. 2, pp. 192-236, 1974.
[2] D. Geman and S. Geman, Stochastic Relaxation, Gibbs Distribution and the Bayesian Restoration of Images IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 6, no. 6, pp. 721-741, 1984.
[3] S.Z. Li, Markov Random Field Modeling in Image Analysis. Tokyo: Springer, 2001.
[4] Markov Random Fields: Theory and Applications, R. Chellappa and A. Jain, eds. Academic Press, 1993.
[5] A.P. Dempster, N.M. Larid, and D.B. Bubin, Maximum Likelihood Form Incomplete Data via EM Algorithm J. Royal Statistical Soc., Series B, vol. 39, pp. 1-38, 1977.
[6] J.L. Marroquin, S. Mitter, and T. Poggio, Probabilistic Solution of Ill-Posed Problems in Computational Vision J. Am. Statistical Assoc., vol. 82, no. 397, pp. 76-89, 1987.
[7] N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, and E. Teller, Equations of State Calculations by Fast Computational Machine J. Chemical Physics, vol. 21, pp. 1087-1092, 1953
[8] J. Besag, On the Statistical Analysis of Dirty Pictures J. Royal Statistical Soc. B, vol. 48, no. 3, pp. 259-302, 1974.
[9] J. Zhang,“The mean field theory in EM procedures for Markov random fields,” IEEE Transactions on Sig. Proc., vol. 40, no. 10, pp. 2570-2583, Oct. 1992.
[10] D. Geiger and F. Girosi,“Parallel and deterministic algorithms from MRFs: Surface reconstruction,” IEEE Transactions on PAMI, vol. 13, no. 5, pp. 401-412, May 1991.
[11] J. L. Marroquin, F. Velasco, M. Rivera, and M. Nakamura, Gauss-Markov Measure Field Models for Low-Level Vision IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 23, no. 4, pp. 337-348, Apr. 2001.
[12] J.L. Marroquin, E. Arce, and S. Botello, Hidden Markov Measure Field Models for Image Segmentation Centro de Investigacion en Matematicas, Technical Report 1-02-05 (CC), Guanajuato, Gto. , Mexico, 2002, available at:http://www.cimat.mx/reportes/enlineaI-02-05.pdf .
[13] J.L. Marroquin, Deterministic Interactive Particle Models for Image Processing and Computer Graphics Graphical Models and Image Processing, vol. 55, no. 5, pp. 408-417, 1993.
[14] D.G. Luenberger, Linear and Nonlinear Programming. Reading, Mass.: Addison Wesley, 1989.
[15] A. Jalobeanu, L. Blanc-Feraud, and J. Zerubia, Hyperparameter Estimation for Satellite Image Restoration Using a MCMC Maximum-Likelihood Method Pattern Recognition, vol. 35, no. 2, pp. 341-352, Feb. 2002.
[16] N. Vasconcelos and A. Lippman, Empirical Bayes Motion Segmentation IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 23, no. 2, pp. 217-221, Feb. 2001.
[17] J.C. Rajapakse and F. Krugge, Segmentation of Magnetic Resonance Images with Intensity Inhomogeneities Image and Vision Computing, vol. 16, pp. 165-180, 1998.
[18] K. Held, E.R. Kopsa, B.J. Krause, W.M. Wells, R. Kikinis, and H.W. Muller-Gartner, Markov Random Field Segmentation of Brain MR Images IEEE Trans. Medical Imaging, vol. 16, no. 6, pp. 878-886, 1997.
[19] W.M. WellsIII, W.E.L. Grimson, R. Kikinis, and F.A. Jolesz, Adaptive Segmentation of MRI Data IEEE Trans. Medical Imaging, vol. 15, pp. 429-442, Aug. 1996.
[20] Y. Zhang, M. Brady, and S. Smith, Segmentation of Brain MR Images through a Hidden Markov Random Field Model and the Expectation-Maximization Algorithm IEEE Trans. Medical Imaging, vol. 20, no. 1, pp. 45-57, Jan. 2001.
[21] M. Styner, C. Brechbuler, G. Szekely, and G. Gerig, Parametric Estimate of Intensity Inhomogeneities Applied to MRI IEEE Trans. Medical Imaging, vol. 19, no. 3, pp. 153-165, 2000.
[22] J.L. Marroquin, B.C. Vemuri, S. Botello, F. Calderon, and A. Fernandez-Bouzas, An Accurate and Efficient Bayesian Method for Automatic Segmentation of Brain MRI IEEE Trans. Medical Imaging, vol. 21, no. 8, pp. 934-945, 2002.
[23] I.J. Schoenberg, Cardinal Spline Interpolation. Philadelphia, P.A.: Soc. for Industrial and Applied Math., 1973.
[24] C.A. Cocosco, V. Kollokian, R.K. Kwan, and A.C. Evans, BrainWeb: Online Interface to a 3D MRI Simulated Brain Database NeuroImage, vol. 5, no. 4,parts 2/4, S425, 1997.
[25] K.V. Leemput, F. Maes, D. Vandermuelen, and P. Suetens, Automated Model-Based Tissue Classification of MR Images of the Brain IEEE Trans. Medical Imaging, vol. 18, no. 10, pp. 897-908, 1999.
[26] J. Shi and J. Malik, Motion Segmentation and Tracking Using Normalized Cuts Proc. Sixth Int'l Conf. Computer Vision (ICCV '98), pp. 1154-1160, 1998.
[27] J. Zhang and G.G. Hanauer, “The Application of Mean Field Theory to Image Motion Estimation,” Trans. Image Processing, vol. 4, no. 1, pp. 19-32, 1995.
[28] F. Heitz and P. Bouthemy, Multimodal Estimation of Discontinuous Optical Flow Using Markov Random Fields IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 15, no. 12, pp. 1217-1232, Dec. 1993.
[29] J. Konrad and E. Dubois, Bayesian Estimation of Motion Vector Fields IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 14, no. 9, pp. 910-927, Sept. 1992.
[30] Y. Weiss and E. Adelson, “A Unified Mixture Framework for Motion Segmentation: Incorporating Spatial Coherence and Estimating the Number of Models,” Proc. IEEE Computer Soc. Conf. Computer Vision and Pattern Recognition, pp. 321-326, 1996.
[31] J. Nocedal and S.J. Wright, Numerical Optimization. New York: Springer, 1999.

Index Terms:
Markov random fields, segmentation, motion.
Citation:
Jose L. Marroquin, Edgar Arce Santana, Salvador Botello, "Hidden Markov Measure Field Models for Image Segmentation," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 25, no. 11, pp. 1380-1387, Nov. 2003, doi:10.1109/TPAMI.2003.1240112
Usage of this product signifies your acceptance of the Terms of Use.