
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
Asi Elad, Ron Kimmel, "On Bending Invariant Signatures for Surfaces," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 25, no. 10, pp. 12851295, October, 2003.  
BibTex  x  
@article{ 10.1109/TPAMI.2003.1233902, author = {Asi Elad and Ron Kimmel}, title = {On Bending Invariant Signatures for Surfaces}, journal ={IEEE Transactions on Pattern Analysis and Machine Intelligence}, volume = {25}, number = {10}, issn = {01628828}, year = {2003}, pages = {12851295}, doi = {http://doi.ieeecomputersociety.org/10.1109/TPAMI.2003.1233902}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Pattern Analysis and Machine Intelligence TI  On Bending Invariant Signatures for Surfaces IS  10 SN  01628828 SP1285 EP1295 EPD  12851295 A1  Asi Elad, A1  Ron Kimmel, PY  2003 KW  MDS (MultiDimensional Scaling) KW  FMTD (Fast Marching Method on Triangulate Domains) KW  isometric signature KW  classification KW  geodesic distance. VL  25 JA  IEEE Transactions on Pattern Analysis and Machine Intelligence ER   
Abstract—Isometric surfaces share the same geometric structure, also known as the "first fundamental form." For example, all possible bendings of a given surface that includes all length preserving deformations without tearing or stretching the surface are considered to be isometric. We present a method to construct a
[1] F.J. Aherne, N.A. Thacker, and P.I. Rockett, Optimal Pairwise Geometric Histograms Proc. British Machine Vision Conf. (BMVC), pp. 480490, 1997.
[2] F. Arman and J.K. Aggarwal, ModelBased Object Recognition in DenseRange Images A Review ACM Computing Surveys, vol. 25, no. 1, pp. 543, 1993.
[3] A.P. Ashbrook, N.A. Thacker, and P.I. Rockett, Multiple Shape Recognition using Pairwise Geometric Histograms Based Algorithms Proc. IEEE Image Processing, 1995.
[4] A.P. Ashbrook, N.A. Thacker, and P.I. Rockett, Pairwise Geometric Histograms: A Scalable Solution for Recognition 2D Rigid Shapes Proc. Ninth Scandinavian Conf. Image Analysis, vol. 1, pp. 271278, 1995.
[5] A.P. Ashbrook, N.A. Thacker, P.I. Rockett, and C.I. Brown, Robust Recognition of Scaled Shapes Using Pairwise Geometric Histograms Proc. British Machine Vision Conf. (BMVC), pp. 503512, 1995.
[6] G. Barequet and M. Sharir, “Partial Surface and Volume Matching in Three Dimensions,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 19, no. 9, pp. 929948, Sept. 1997.
[7] P.J. Besl, "Geometric Modeling and Computer Vision," Proc. IEEE, vol. 76, pp. 936958, 1988.
[8] P.J. Besl, The Free Form Matching Problem Machine Vision for ThreeDimensional Scene, H. Freeman, ed., New York: Academic, 1990.
[9] P.J. Besl, Triangles as a Primary Representation Object Recognition in Computer Vision, pp. 191206, 1994.
[10] P.J. Besl and R.C. Jain, ThreeDimensional Object Recognition ACM Computing Surveys, vol. 17, no. 1, pp. 75154, 1985.
[11] J. Bloomenthal and C. Lin, Skeletal Methods of Shape Manipulation Proc. Shape Modeling and Applications, pp. 4447, 1999.
[12] I. Borg and P. Groenen, Modern Multidimensional Scaling Theory and Applications. Springer, 1997.
[13] A. Bronstein, M. Bronstein, and R. Kimmel, ExpressionInvariant 3D Face Recognition Proc. Audio and VideoBased Biometric Person Authentication (AVBPA), pp. 6269, 2003.
[14] M.A.A. Cox and T.F. Cox, Multidimensional Scaling. Chapman and Hall, 1994.
[15] A. Elad and R. Kimmel, Bending Invariant Representations for Surfaces Proc. Computer Vision and Pattern Recognition (CVPR), Dec. 2001.
[16] Y. Eldar, M. Lindenbaum, M. Porat, and Y.Y. Zeevi, The Farthest Point Strategy for Progressive Image Sampling IEEE Trans. Image Processing, vol. 6, no. 9, pp. 13051315, 1997.
[17] C. Faloutsos and K.D. Lin, A Fast Algorithm for Indexing, DataMining and Visualisation of Traditional and Multimedia Datasets ACM SIGMOD, pp. 163174, May 1995.
[18] O.D. Faugeras, New Steps towards a Flexible 3D Vision System for Robotics Proc. IEEE Seventh Int'l Conf. Pattern Recognition, vol. 2, pp. 796805, 1984.
[19] O.D. Faugeras and M. Hebert, A 3D Recognition and Positioning Algorithm Using Geometrical Matching between Primitive Surfaces Proc. Seventh Int'l Joint Conf. Artificial Intelligence, pp. 9961002, Aug. 1983.
[20] R. Grossman, N. Kiryati, and R. Kimmel, Computational Surface Flattening: A VoxelBased Approach IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 24, no. 4, pp. 433441, Apr. 2002.
[21] M. Hilaga, Y. Shinagawa, T. Kohmura, and T.L. Kunii, Topology Matching for Fully Automatic Similarity Estimation of 3D Shapes Proc. SIGGRAPH '01, pp. 203212, 2001.
[22] B.K.P Horn, Extended Gaussian Images Proc. IEEE, vol. 72, no. 12, pp. 16711686, 1984.
[23] R. Kimmel and J.A. Sethian, Computing Geodesic Paths on Manifolds Proc. Nat'l Academy of Science, vol. 95, pp. 84318435, 1998.
[24] E. Kreyszig, Differential Geometry. Dover, 1991.
[25] J.B. Kruskal and M. Wish, Multidimensional Scaling. Sage, 1978.
[26] S. Lavallee and R. Szeliski, "Recovering the Position and Orientation of FreeForm Objects From Image Contours Using 3D Distance Maps," IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 17, no. 4, pp. 378390, 1995.
[27] S. Loncaric, A Survey of Shape Analysis Techniques Pattern Recognition, vol. 31, no. 8, pp. 9831001, 1998.
[28] S. Melax, A Simple, Fast and Effective Polygon Reduction Algorithm Game Developer J., Nov. 1998.
[29] R. Osada, T. Funkhouser, B. Chazelle, and D. Dobkin, Matching 3D Models with Shape Distributions Shape Modeling Int'l, May 2001.
[30] A.R. Pope, ModelBased Object Recognition: A Survey of Recent Research Technical Report TR9404, Univ. of British Colombia, 1994.
[31] M. Potmesil, Generation of 3D Surface Descriptions from Images of PatternIlluminated Objects Proc. IEEE Conf. Pattern Recognition and Image Processing, pp. 553559, 1979.
[32] E.L. Schwartz, A. Shaw, and E. Wolfson, “A Numerical Solution to the Generalized Mapmaker's Problem: Flattening Nonconvex Polyhedral Surfaces,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 11, pp. 10051008, 1989.
[33] J.A. Sethian, A Review of the Theory, Algorithms, and Applications of Level Set Method for Propagating Surfaces Acta Numerica, 1996.
[34] D.W. Storti, G. Turkiyyah, M. Ganter, C. Lim, and D. Stal, Skeleton Based Modeling Operations on Solids Proc. Third ACM Solid Modeling, pp. 141154, 1997.
[35] A. Tal and M. Elad, Similarity between 3D Objects An Iterative and Interactive Approach IEEE Trans. Neural Networks, submitted
[36] J.N. Tsitsiklis, Efficient Algorithm for Globally Optimal Trajectories IEEE Trans. Automatic Control, vol. 40, no. 9, pp. 15281538, 1995.
[37] G. Zigelman, R. Kimmel, and N. Kiryati, “Texture Mapping Using Surface Flattening via MultiDimensional Scaling,” IEEE Trans. Visualization and Computer Graphics, to appear.