The Community for Technology Leaders
RSS Icon
Subscribe
Issue No.07 - July (2003 vol.25)
pp: 787-800
ABSTRACT
<p><b>Abstract</b>—In this paper, we formulate the stereo matching problem as a Markov network and solve it using Bayesian belief propagation. The stereo Markov network consists of three coupled Markov random fields that model the following: a smooth field for depth/disparity, a line process for depth discontinuity, and a binary process for occlusion. After eliminating the line process and the binary process by introducing two robust functions, we apply the belief propagation algorithm to obtain the maximum a posteriori (MAP) estimation in the Markov network. Other low-level visual cues (e.g., image segmentation) can also be easily incorporated in our stereo model to obtain better stereo results. Experiments demonstrate that our methods are comparable to the state-of-the-art stereo algorithms for many test cases.</p>
INDEX TERMS
Stereoscopic vision, belief propagation, Markov network, Bayesian inference.
CITATION
Jian Sun, Nan-Ning Zheng, Heung-Yeung Shum, "Stereo Matching Using Belief Propagation", IEEE Transactions on Pattern Analysis & Machine Intelligence, vol.25, no. 7, pp. 787-800, July 2003, doi:10.1109/TPAMI.2003.1206509
86 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool