The Community for Technology Leaders
RSS Icon
Subscribe
Issue No.05 - May (2003 vol.25)
pp: 623-633
ABSTRACT
<p><b>Abstract</b>—We incorporate prior knowledge to construct nonlinear algorithms for invariant feature extraction and discrimination. Employing a unified framework in terms of a nonlinearized variant of the Rayleigh coefficient, we propose nonlinear generalizations of Fisher's discriminant and oriented PCA using support vector kernel functions. Extensive simulations show the utility of our approach.</p>
INDEX TERMS
Fisher's discriminant, nonlinear feature extraction, support vector machine, kernel functions, Rayleigh coefficient, oriented PCA.
CITATION
Gunnar Rätsch, Sebastian Mika, Bernhard Schölkopf, Alex Smola, Klaus-Robert Müller, "Constructing Descriptive and Discriminative Nonlinear Features: Rayleigh Coefficients in Kernel Feature Spaces", IEEE Transactions on Pattern Analysis & Machine Intelligence, vol.25, no. 5, pp. 623-633, May 2003, doi:10.1109/TPAMI.2003.1195996
17 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool