The Community for Technology Leaders
RSS Icon
Subscribe
Issue No.03 - March (2003 vol.25)
pp: 343-353
Josef Kittler , IEEE Computer Society
ABSTRACT
<p><b>Abstract</b>—We specify an analogy in which the various classifier combination methodologies are interpreted as the implicit reconstruction, by tomographic means, of the composite probability density function spanning the entirety of the pattern space, the process of feature selection in this scenario amounting to an extremely bandwidth-limited Radon transformation of the training data. This metaphor, once elaborated, immediately suggests techniques for improving the process, ultimately defining, in reconstructive terms, an optimal performance criterion for such combinatorial approaches.</p>
INDEX TERMS
Classifier combination, tomography, probability theory, feature selection.
CITATION
David Windridge, Josef Kittler, "A Morphologically Optimal Strategy for Classifier Combination: Multiple Expert Fusion as a Tomographic Process", IEEE Transactions on Pattern Analysis & Machine Intelligence, vol.25, no. 3, pp. 343-353, March 2003, doi:10.1109/TPAMI.2003.1182097
18 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool