The Community for Technology Leaders
RSS Icon
Subscribe
Issue No.08 - August (2002 vol.24)
pp: 1147-1151
ABSTRACT
<p>There are needs for evaluating rank order-based similarity between images. Region importance maps from image understanding algorithms or human observer studies are ordered rankings of the pixel locations. We address three problems with Kemeny and Snell's distance (d_{KS}), an existing measure from ordinal ranking theory, when applied to images: its high-computational cost, its bias in favor of images with sparse histograms, and its image-size dependent range of values. We present a novel computationally efficient algorithm for computing d_{KS} between two images and we derive a normalized form \hat{d}_{KS} with no bias whose range is independent of image size. For evaluating similarity between images that can be considered as ordered rankings of pixels, \hat{d}_{KS} is subjectively superior to cross correlation.</p>
INDEX TERMS
Image similarity, rank ordering, spatial layout, Kemeny and Snell distance.
CITATION
Jiebo Luo, Stephen P. Etz, Robert T. Gray, "Normalized Kemeny and Snell Distance: A Novel Metric for Quantitative Evaluation of Rank-Order Similarity of Images", IEEE Transactions on Pattern Analysis & Machine Intelligence, vol.24, no. 8, pp. 1147-1151, August 2002, doi:10.1109/TPAMI.2002.1023811
18 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool