The Community for Technology Leaders
RSS Icon
Subscribe
Issue No.08 - August (2002 vol.24)
pp: 1133-1139
ABSTRACT
<p>To achieve integrated segmentation and recognition in complex scenes, the model-based approach has widely been accepted as a promising paradigm. However, the performance is still far from satisfactory when the target object is highly deformed and the level of outlier contamination is high. In this paper, we first describe two Bayesian frameworks, one for classifying input patterns and another for detecting target patterns in complex scenes using deformable models. Then, we show that the two frameworks are similar to the forward-reverse setting of Hausdorff matching and that their matching and discriminating properties are complementary to each other. By properly combining the two frameworks, we propose a new matching scheme called bidirectional matching. This combined approach inherits the advantages of the two Bayesian frameworks. In particular, we have obtained encouraging empirical results on shape-based pattern extraction, using a subset of the CEDAR handwriting database containing handwritten words of highly varying shape.</p>
INDEX TERMS
Model-based segmentation, deformable models, Bayesian inference, bidirectional matching, Hausdorff matching.
CITATION
Kwok-Wai Cheung, Dit-Yan Yeung, Roland T. Chin, "Bidirectional Deformable Matching with Application to Handwritten Character Extraction", IEEE Transactions on Pattern Analysis & Machine Intelligence, vol.24, no. 8, pp. 1133-1139, August 2002, doi:10.1109/TPAMI.2002.1024135
6 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool