The Community for Technology Leaders
RSS Icon
Subscribe
Issue No.05 - May (2002 vol.24)
pp: 591-602
ABSTRACT
<p>A useful notion of weak dependence between many classifiers constructed with the same training data is introduced. It is shown that if both this weak dependence is low and the expected margins are large, then decison rules based on linear combinations of these classifiers can achieve error rates that decrease exponentially fast. Empirical results with randomized trees and trees constructed via boosting and bagging show that weak dependence is present in these type of trees. Furthermore, these results also suggest that there is a trade-off between weak dependence and expected margins, in the sense that to compensate for low expected margins, there should be low mutual dependence between the classifiers involved in the linear combination.</p>
INDEX TERMS
Exponential bounds, weakly dependent classifiers, classification trees, machine learning
CITATION
A. Murua, "Upper Bounds for Error Rates of Linear Combinations of Classifiers", IEEE Transactions on Pattern Analysis & Machine Intelligence, vol.24, no. 5, pp. 591-602, May 2002, doi:10.1109/34.1000235
21 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool