The Community for Technology Leaders
RSS Icon
Subscribe
Issue No.03 - March (2002 vol.24)
pp: 289-300
ABSTRACT
<p>We studied a number of measures that characterize the difficulty of a classification problem, focusing on the geometrical complexity of the class boundary. We compared a set of real-world problems to random labelings of points and found that real problems contain structures in this measurement space that are significantly different from the random sets. Distributions of problems in this space show that there exist at least two independent factors affecting a problem's difficulty. We suggest using this space to describe a classifier's domain of competence. This can guide static and dynamic selection of classifiers for specific problems as well as subproblems formed by confinement, projection, and transformations of the feature vectors.</p>
INDEX TERMS
classification, clustering, complexity, linear separability, mixture identifiability
CITATION
T.K. Ho, M. Basu, "Complexity Measures of Supervised Classification Problems", IEEE Transactions on Pattern Analysis & Machine Intelligence, vol.24, no. 3, pp. 289-300, March 2002, doi:10.1109/34.990132
30 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool