The Community for Technology Leaders
RSS Icon
Subscribe
Issue No.01 - January (2002 vol.24)
pp: 34-58
ABSTRACT
<p>Images containing faces are essential to intelligent vision-based human computer interaction, and research efforts in face processing include face recognition, face tracking, pose estimation, and expression recognition. However, many reported methods assume that the faces in an image or an image sequence have been identified and localized. To build fully automated systems that analyze the information contained in face images, robust and efficient face detection algorithms are required. Given a single image, the goal of face detection is to identify all image regions which contain a face regardless of its three-dimensional position, orientation, and lighting conditions. Such a problem is challenging because faces are nonrigid and have a high degree of variability in size, shape, color, and texture. Numerous techniques have been developed to detect faces in a single image, and the purpose of this paper is to categorize and evaluate these algorithms. We also discuss relevant issues such as data collection, evaluation metrics, and benchmarking. After analyzing these algorithms and identifying their limitations, we conclude with several promising directions for future research.</p>
INDEX TERMS
Face detection, face recognition, object recognition, view-based recognition, statistical pattern recognition, machine learning.
CITATION
David J. Kriegman, Ming-Hsuan Yang, "Detecting Faces in Images: A Survey", IEEE Transactions on Pattern Analysis & Machine Intelligence, vol.24, no. 1, pp. 34-58, January 2002, doi:10.1109/34.982883
31 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool