The Community for Technology Leaders
RSS Icon
Issue No.02 - February (2001 vol.23)
pp: 228-233
<p><b>Abstract</b>—In the context of the appearance-based paradigm for object recognition, it is generally believed that algorithms based on LDA (Linear Discriminant Analysis) are superior to those based on PCA (Principal Components Analysis). In this communication, we show that this is not always the case. We present our case first by using intuitively plausible arguments and, then, by showing actual results on a face database. Our overall conclusion is that when the training data set is small, PCA can outperform LDA and, also, that PCA is less sensitive to different training data sets.</p>
Face recognition, pattern recognition, principal components analysis, linear discriminant analysis, learning from undersampled distributions, small training data sets.
Aleix M. Martínez, Avinash C. Kak, "PCA versus LDA", IEEE Transactions on Pattern Analysis & Machine Intelligence, vol.23, no. 2, pp. 228-233, February 2001, doi:10.1109/34.908974
26 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool