The Community for Technology Leaders
RSS Icon
Issue No.02 - February (2001 vol.23)
pp: 196-206
<p><b>Abstract</b>—Statistical research in clustering has almost universally focused on data sets described by continuous features and its methods are difficult to apply to tasks involving symbolic features. In addition, these methods are seldom concerned with helping the user in interpreting the results obtained. Machine learning researchers have developed <it>conceptual clustering</it> methods aimed at solving these problems. Following a long term tradition in AI, early conceptual clustering implementations employed logic as the mechanism of concept representation. However, logical representations have been criticized for constraining the resulting cluster structures to be described by necessary and sufficient conditions. An alternative are <it>probabilistic concepts</it> which associate a probability or weight with each property of the concept definition. In this paper, we propose a symbolic hierarchical clustering model that makes use of probabilistic representations and extends the traditional ideas of specificity-generality typically found in machine learning. We propose a parameterized measure that allows users to specify both the number of levels and the degree of generality of each level. By providing some feedback to the user about the balance of the generality of the concepts created at each level and given the intuitive behavior of the user parameter, the system improves user interaction in the clustering process.</p>
Conceptual clustering, hierarchical clustering, probabilistic concepts, user interaction.
Luis Talavera, Javier Béjar, "Generality-Based Conceptual Clustering with Probabilistic Concepts", IEEE Transactions on Pattern Analysis & Machine Intelligence, vol.23, no. 2, pp. 196-206, February 2001, doi:10.1109/34.908969
521 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool