The Community for Technology Leaders
RSS Icon
Subscribe
Issue No.10 - October (2000 vol.22)
pp: 1078-1089
ABSTRACT
<p><b>Abstract</b>—An unsupervised classification algorithm is derived by modeling observed data as a mixture of several mutually exclusive classes that are each described by linear combinations of independent, non-Gaussian densities. The algorithm estimates the density of each class and is able to model class distributions with non-Gaussian structure. The new algorithm can improve classification accuracy compared with standard Gaussian mixture models. When applied to blind source separation in nonstationary environments, the method can switch automatically between classes, which correspond to contexts with different mixing properties. The algorithm can learn efficient codes for images containing both natural scenes and text. This method shows promise for modeling non-Gaussian structure in high-dimensional data and has many potential applications.</p>
INDEX TERMS
Unsupervised classification, Gaussian mixture model, independent component analysis, blind source separation, image coding, automatic context switching, maximum likelihood.
CITATION
Te-Won Lee, Michael S. Lewicki, Terrence J. Sejnowski, "ICA Mixture Models for Unsupervised Classification of Non-Gaussian Classes and Automatic Context Switching in Blind Signal Separation", IEEE Transactions on Pattern Analysis & Machine Intelligence, vol.22, no. 10, pp. 1078-1089, October 2000, doi:10.1109/34.879789
26 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool