This Article 
   
 Share 
   
 Bibliographic References 
   
 Add to: 
 
Digg
Furl
Spurl
Blink
Simpy
Google
Del.icio.us
Y!MyWeb
 
 Search 
   
A New Structure-from-Motion Ambiguity
July 2000 (vol. 22 no. 7)
pp. 685-700

Abstract—This paper demonstrates the existence of a new, approximate, intrinsic ambiguity in Euclidean structure from motion (SFM) which occurs as generically as the bas-relief ambiguity but, unlike it, strengthens for scenes with more depth variation. The ambiguity does not occur in projective SFM, but the reasons for this make projective reconstructions more likely to have large errors. Our analysis gives a semiquantitative characterization of the least-squares error surface over a domain complementary to that analyzed by Jepson, Heeger, and Maybank. As part of our analysis, we show that the least-squares error for infinitesimal motion—the optical-flow error—gives a good approximation to the least-squares error for moderate finite motions. We propose that many high-error local minima occur for epipoles in or near the image. We also establish the existence of a new local minimum in minimizing over the rotation, given the translation direction.

[1] G. Adiv, “Inherent Ambiguities in Recovering 3-D Motion and Structure from a Noisy Flow Field,” Trans. Pattern Analysis and Machine Intelligence, vol. 11, pp. 477–489, 1989.
[2] P. Belhumeur, D. Kriegman, and A. Yuille, “The Bas-Relief Ambiguity,” Proc. Conf. Computer Vision and Pattern Recognition, pp. 1,060–1,066, 1997.
[3] A. Chiuso, R. Brockett, and S. Soatto, “Optimal Structure from Motion: Local Ambiguities and Global Estimates,” technical report, Washington Univ., 1999.
[4] K. Daniilidis and M. Spetsakis, ”Understanding Noise Sensitivity in Structure from Motion,” Visual Navigation, Y. Aloimonos, ed., pp. 61–88, Lawrence Erlbaum, 1993.
[5] R. Dutta, R. Manmatha, L.R. Williams, and E.M. Riseman, “A Data Set for Quantitative Motion Analysis,” Proc. Conf. Computer Vision and Pattern Recognition, pp. 159–164, 1989.
[6] T.Y. Tian, C. Tomasi, and D.J. Heeger, “Comparison of Approaches to Egomotion Computation,” Proc. Conf. Computer Vision and Pattern Recognition, pp. 315–320, 1996.
[7] D.J. Heeger and A.D. Jepson, “Subspace Methods for Recovering Rigid Motion I: Algorithm and Implementation,” Int'l J. Computer Vision, vol. 7, pp. 95–117, 1992.
[8] A.D. Jepson and D.J. Heeger, “Linear Subspace Methods for Recovering Translational Direction,” Spatial Vision in Humans and Robots, pp. 39–62, Cambridge Univ. Press, 1993.
[9] A.D. Jepson and D.J. Heeger, “Subspace Methods for Recovering Rigid Motion II: Theory,” Technical Report RBCV-TR-90-36, Univ. of Toronto, 1990.
[10] J.J. Koenderink and A.J. Van Doorn, “Affine Structure from Motion,” J. Optical Soc. Am., vol. 8, no. 2, pp. 377–385, 1991.
[11] R. Kumar and A.R. Hanson, “Sensitivity of the Pose Refinement Problem to Accurate Estimation of Camera Parameters,” Proc. Int'l Conf. Computer Vision, pp. 365 369, 1990.
[12] S. Maybank,Theory of Reconstruction from Image Motion.Berlin, Heidelberg: Springer-Verlag, 1993.
[13] S. Maybank, “A Theoretical Study of Optical Flow,” PhD thesis, Univ. of London, 1987.
[14] J. Oliensis and Y. Genc, “New Algorithms for Two-Frame Structure from Motion,” NECI technical report, 2000. Expanded version of Proc. Int'l Conf. Computer Vision, pp. 737–744, 1999.
[15] J. Oliensis and Y. Genc, “Fast Algorithms for Projective Multi-Frame Structure from Motion,” Proc. Int'l Conf. Computer Vision, pp. 536–543, 1999.
[16] J. Oliensis, “A New Structure from Motion Ambiguity,” Proc. Conf. Computer Vision and Pattern Recognition, pp. 185–191, 1999.
[17] J. Oliensis and V. Govindu, “An Experimental Study of Projective Structure from Motion,” Trans. Pattern Analysis and Machine Intelligence, vol. 21, no. 7, pp. 665–671, July 1999.
[18] J. Oliensis, “Computing the Camera Heading from Multiple Frames,” Proc. Conf. Computer Vision and Pattern Recognition, pp. 203–210, 1998. Expanded version in “Recovering Heading and Structure for Constant-Direction Motion,” NECI Technical Report, 1999.
[19] J. Oliensis, “A Critique of Structure from Motion Algorithms,” Computer Vision and Image Understanding, to appear.
[20] J. Oliensis, “A Multi-Frame Structure from Motion Algorithm under Perspective Projection,” Int'l J. Computer Vision, vol. 34 nos. 2/3, pp. 163–192, 1999.
[21] J. Oliensis, “Structure from Linear and Planar Motions,” Proc. Conf. Computer Vision and Pattern Recognition, pp. 335–342, 1996.
[22] J. Oliensis, “Multiframe Structure from Motion in Perspective,” Proc. Workshop Representations of Visual Scenes, pp. 77–84, 1995.
[23] http://www.neci.nj.nec.com/homepages/oliensis .
[24] J. Oliensis, “Rigorous Bounds for Two-Frame Structure from Motion,” Proc. European Conf. Computer Vision, 1996, and NECI technical report, Oct. 1995 (expanded version).
[25] T. Papathomas, “See How They Turn: False Depth and Motion in Hughes's Reverspectives,” technical report, Rutgers Univ., 1999.
[26] S. Soatto and R. Brocket, “Optimal Structure from Motion: Local Ambiguities and Global Estimates,” Proc. Conf. Computer Vision and Pattern Recognition, pp. 282–288, 1998.
[27] S. Soatto and R. Brocket, “Optimal and Suboptimal Structure from Motion,” technical report, Harvard Univ., 1997.
[28] S. Soatto and P. Perona, “Recursive 3-D Visual Motion Estimation Using Subspace Constraints,” Int'l J. Computer Vision, vol. 22 no. 3, pp. 235–259, 1997.
[29] S. Srinivasan, “Extracting Structure from Optical Flow Using the Fast Error Search Technique,” CAR-Technical Report-893, Univ. of Maryland, 1998, and Proc. Int'l Conf. Computer Vision, pp. 528–535, 1999.
[30] R. Szeliski, S.B. Kang, “Shape Ambiguities in Structure-from-Motion,” Trans. Pattern Analysis and Machine Intelligence, vol. 19, no. 5, pp. 506–512, 1997.
[31] C. Tomasi and J. Shi, “Direction of Heading from Image Deformations,” Proc. Conf. Computer Vision and Pattern Recognition, pp. 422–427, 1993.
[32] C. Tomasi and T. Kanade, "Shape and Motion From Image Streams Under Orthography: A Factorization Method," Int'l J. Computer Vision, vol. 9, no. 2, pp. 137-154, 1992.
[33] J. Weng, N. Ahuja, and T. Huang, "Optimal Motion and Structure Estimation," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 15, no. 9, pp. 864-884, 1993.
[34] J. Weng,T. Huang,, and N. Ahuja,“Motion and structure from two perspective views:Algorithms, error analysis and error estimation,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 11, no. 5, pp. 451-476, May 1989.
[35] G.S. Young and R. Chellappa, “3-D Motion Estimation Using a Sequence of Noisy Stereo Images: Models, Estimation, and Uniqueness Results,” Trans. Pattern Analysis and Machine Intelligence, vol. 12, no. 8, pp. 735–759, Aug. 1990.
[36] Z. Zhang, “On the Optimization Criteria Used in 2-View Motion Analysis,” Trans. Pattern Analysis and Machine Intelligence, vol. 20, pp. 717–729, 1998, and Proc. Int'l Conf. Computer Vision, pp. 772–777, 1998.

Index Terms:
Structure-from-motion, error sensitivity, ambiguity, bas-relief ambiguity, projective geometry, least–squares error. local minima.
Citation:
John Oliensis, "A New Structure-from-Motion Ambiguity," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 22, no. 7, pp. 685-700, July 2000, doi:10.1109/34.865186
Usage of this product signifies your acceptance of the Terms of Use.