The Community for Technology Leaders
RSS Icon
Subscribe
Issue No.11 - November (1999 vol.21)
pp: 1145-1157
ABSTRACT
<p><b>Abstract</b>—Algorithms for object segmentation are crucial in many image processing applications. During past years, active contour models (snakes) have been widely used for finding the contours of objects. This segmentation strategy is classically edge-based in the sense that the snake is driven to fit the maximum of an edge map of the scene. In this paper, we propose a region snake approach and we determine fast algorithms for the segmentation of an object in an image. The algorithms developed in a Maximum Likelihood approach are based on the calculation of the statistics of the inner and the outer regions (defined by the snake). It has thus been possible to develop optimal algorithms adapted to the random fields which describe the gray levels in the input image if we assume that their probability density function family are known. We demonstrate that this approach is still efficient when no boundary's edge exists in the image. We also show that one can obtain fast algorithms by transforming the summations over a region, for the calculation of the statistics, into summations along the boundary of the region. Finally, we will provide numerical simulation results for different physical situations in order to illustrate the efficiency of this approach.</p>
INDEX TERMS
Image processing, statistical theory of estimation, segmentation, active contour.
CITATION
Christophe Chesnaud, Philippe Réfrégier, Vlady Boulet, "Statistical Region Snake-Based Segmentation Adapted to Different Physical Noise Models", IEEE Transactions on Pattern Analysis & Machine Intelligence, vol.21, no. 11, pp. 1145-1157, November 1999, doi:10.1109/34.809108
16 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool