This Article 
   
 Share 
   
 Bibliographic References 
   
 Add to: 
 
Digg
Furl
Spurl
Blink
Simpy
Google
Del.icio.us
Y!MyWeb
 
 Search 
   
Algebraic and Geometric Tools to Compute Projective and Permutation Invariants
January 1999 (vol. 21 no. 1)
pp. 58-65

Abstract—This paper studies the computation of projective invariants in pairs of images from uncalibrated cameras and presents a detailed study of the projective and permutation invariants for configurations of points and/or lines. Two basic computational approaches are given, one algebraic and one geometric. In each case, invariants are computed in projective space or directly from image measurements. Finally, we develop combinations of those projective invariants which are insensitive to permutations of the geometric primitives of each of the basic configurations.

[1] K.E. Aström and L. Morin, "Random Cross Ratios," Proc. Ninth Scandinavian Conf. Image Analyses, pp. 1,053-1,061,Uppsala, Sweden, 1995.
[2] S. Carlsson, "The Double Algebra: An Effective Tool for Computing Invariants in Computer Vision," Applications of Invariants in Computer Vision, J.L. Mundy and A. Zissermann, eds. New York: Springer LNCS 825, 1994, pp. 145-174.
[3] G. Csurka, Modelisation projective des objets tridimensionnels en vision par ordinateur, thèse de doctorat, Universitéde Nice-Sophia Antipolis, Apr. 1996.
[4] G. Csurka and O. Faugeras, "Algebraic and Geometric Tools to Compute Projective and Permutation Invariants," Proc. Int'l Workshop AFPAC 1997 (Algebraic Frames for the Perception-Action Cycle, Kiel, Germany). New York: Springer, 1997, LNCS 1315, pp. 207-218.
[5] G. Csurka and O. Faugeras, "Computing Three-Dimensional Projective Invariants From a Pair of Images Using the Grassmann-Cayley Algebra," Image and Vision Computing, vol. 16, no. 1, pp. 3-12, Jan. 1998.
[6] F. Devernay and O. Faugeras, "From Projective to Euclidean Reconstruction," Proc. Conf. Computer Vision and Pattern Recognition,San Francisco, June 1996.
[7] P. Doubilet, G-C. Rota, and J. Stein, "On the Foundations of Combinatorial Theory: IX Combinatorial Methods in Invariant Theory," Studies in Applied Mathematics, vol. 53, pp. 87-119, 1974.
[8] R. Hartley, "Invariants of Lines in Space," Proc. DARPA Image Understanding Workshop, pp. 737-744, 1993.
[9] R. Hartley and P. Sturm, "Triangulation," Proc. DARPA Image Understanding Workshop, pp. 957-966,Monterey, Calif., Nov. 1994.
[10] D. Hestenes and R. Ziegler, "Projective Geometry With Clifford Algebra," Acta Applicandae Mathematicae, vol. 23, pp. 25-63, 1991.
[11] R. Horaud, F. Dornaika, and B. Espiau, "Visually Guided Object Grasping," IEEE Trans. Robotics and Automation, vol. 14, no. 4, pp. 525-532, Aug. 1998.
[12] R. Horaud and G. Csurka, "Self-Calibration and Euclidean Reconstruction Using Motions of a Stereo Rig," Proc. IEEE Int'l Conf. Computer Vision, pp. 96-103,Bombay, India, Jan. 1998.
[13] J. Lasenby, E. Bayro-Corrochano, A.N. Lasenby, and G. Sommer, "A New Methodology for Computing Invariants in Computer Vision," Proc. Int'l Conf. Pattern Recognition,Vienna, Aug. 1996.
[14] P. Meer, R. Lenz, and S. Ramakrishna, "Efficient Invariant Representations," Int'l J. Computer Vision, vol. 26, pp. 137-152, 1998.
[15] L. Morin, Quelques contributions des invariants projectifsàla vision par ordinateur, thèse de doctorat, Institut National Polytechnique de Gre noble, Jan. 1993.
[16] J.G. Semple and G.T. Kneebone, Algebraic Projective Geometry.Oxford, England: Oxford Science Publication, 1952.
[17] U. Uenohara and T. Kanade, "Geometric Invariants for Verification in 3D Object Tracking," Proc. IEEE/RSJ Int'l Conf. Intelligent Robots and Systems, vol. 2, pp. 785-790,Osaka, Japan, Nov. 1996.
[18] C. Zeller and O. Faugeras, "Applications of Non-Metric Vision to Some Visual Guided Tasks," Proc. 12th Int'l Conf. Pattern Recognition,Jerusalem, Israel, 1994.
[19] A. Zisserman, P.A. Beardsley, and I.D. Reid, "Metric Calibration of a Stereo Rig," Workshop Representation of Visual Scenes, pp. 93-100,Cambridge, Mass., USA, June 1995.

Index Terms:
Uncalibrated stereo, projective and permutation invariants, indexation, projective reconstruction, cross ratio, Grassmann-Cayley algebra.
Citation:
Gabriella Csurka, Olivier Faugeras, "Algebraic and Geometric Tools to Compute Projective and Permutation Invariants," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 21, no. 1, pp. 58-65, Jan. 1999, doi:10.1109/34.745735
Usage of this product signifies your acceptance of the Terms of Use.