The Community for Technology Leaders
RSS Icon
Subscribe
Issue No.01 - January (1999 vol.21)
pp: 58-65
ABSTRACT
<p><b>Abstract</b>—This paper studies the computation of projective invariants in pairs of images from uncalibrated cameras and presents a detailed study of the projective and permutation invariants for configurations of points and/or lines. Two basic computational approaches are given, one algebraic and one geometric. In each case, invariants are computed in projective space or directly from image measurements. Finally, we develop combinations of those projective invariants which are insensitive to permutations of the geometric primitives of each of the basic configurations.</p>
INDEX TERMS
Uncalibrated stereo, projective and permutation invariants, indexation, projective reconstruction, cross ratio, Grassmann-Cayley algebra.
CITATION
Gabriella Csurka, Olivier Faugeras, "Algebraic and Geometric Tools to Compute Projective and Permutation Invariants", IEEE Transactions on Pattern Analysis & Machine Intelligence, vol.21, no. 1, pp. 58-65, January 1999, doi:10.1109/34.745735
16 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool