The Community for Technology Leaders
RSS Icon
Subscribe
Issue No.05 - May (1998 vol.20)
pp: 481-492
ABSTRACT
<p><b>Abstract</b>—Image segmentation is fundamental to many image analysis problems. It aims to partition a digital image into a set of nonoverlapping homogeneous regions. The main contribution of this paper is the development of a new segmentation procedure which is designed to segment images corrupted by <it>correlated</it> noise. This new segmentation procedure is based on Rissanen's minimum description length (MDL) principle and consists of two components: i) an MDL-based criterion in which the "best" segmentation is defined as its minimizer and ii) a merging algorithm which attempts to locate this minimizer. The performance of this procedure is illustrated via a simulation study, with promising results.</p>
INDEX TERMS
Correlated noise, image segmentation, merging algorithm, minimum description length.
CITATION
Thomas C.M. Lee, "Segmenting Images Corrupted by Correlated Noise", IEEE Transactions on Pattern Analysis & Machine Intelligence, vol.20, no. 5, pp. 481-492, May 1998, doi:10.1109/34.682178
46 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool