The Community for Technology Leaders
RSS Icon
Subscribe
Issue No.01 - January (1998 vol.20)
pp: 90-94
ABSTRACT
<p><b>Abstract</b>—Textures are frequently described using co-occurrence histograms of gray levels at two pixels in a given relative position. Analysis of several co-occurring pixel values may benefit texture description but is impeded by the exponential growth of histogram size. To make use of multidimensional histograms, we have developed methods for their reduction. The method described here uses linear compression, dimension optimization, and vector quantization. Experiments with natural textures showed that multidimensional histograms reduced with the new method provided higher classification accuracies than the channel histograms and the wavelet packet signatures. The new method was significantly faster than our previous one.</p>
INDEX TERMS
Texture classification, multidimensional histograms, vector quantization, self-organizing map, feature selection.
CITATION
Kimmo Valkealahti, Erkki Oja, "Reduced Multidimensional Co-Occurrence Histograms in Texture Classification", IEEE Transactions on Pattern Analysis & Machine Intelligence, vol.20, no. 1, pp. 90-94, January 1998, doi:10.1109/34.655653
19 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool