The Community for Technology Leaders
RSS Icon
Subscribe
Issue No.12 - December (1997 vol.19)
pp: 1371-1375
ABSTRACT
<p><b>Abstract</b>—It is important to use a better criterion in selection and discretization of attributes for the generation of decision trees to construct a better classifier in the area of pattern recognition in order to intelligently access huge amount of data efficiently. Two well-known criteria are gain and gain ratio, both based on the entropy of partitions. We propose in this paper a new criterion based also on entropy, and use both theoretical analysis and computer simulation to demonstrate that it works better than gain or gain ratio in a wide variety of situations. We use the usual entropy calculation where the base of the logarithm is not two but the number of successors to the node. Our theoretical analysis leads some specific situations in which the new criterion works always better than gain or gain ratio, and the simulation result may implicitly cover all the other situations not covered by the analysis.</p>
INDEX TERMS
Decision-tree generators, attribute selection, discretization, grouping, gain, gain ratio, normalized gain, entropy.
CITATION
Byung Hwan Jun, Chang Soo Kim, Hong-Yeop Song, Jaihie Kim, "A New Criterion in Selection and Discretization of Attributes for the Generation of Decision Trees", IEEE Transactions on Pattern Analysis & Machine Intelligence, vol.19, no. 12, pp. 1371-1375, December 1997, doi:10.1109/34.643896
18 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool