The Community for Technology Leaders
RSS Icon
Subscribe
Issue No.12 - December (1997 vol.19)
pp: 1313-1324
ABSTRACT
<p><b>Abstract</b>—An approach to supervised training of character templates from page images and unaligned transcriptions is proposed. The template training problem is formulated as one of constrained maximum likelihood parameter estimation within the document image decoding framework. This leads to a three-phase iterative training algorithm consisting of transcription alignment, aligned template estimation (ATE), and channel estimation steps. The maximum likelihood ATE problem is shown to be NP-complete and, thus, an approximate solution approach is developed. An evaluation of the training procedure in a document-specific decoding task, using the University of Washington UW-II database of scanned technical journal articles, is described.</p>
INDEX TERMS
Document image decoding, Markov models, template estimation, character recognition, document recognition, maximum likelihood.
CITATION
Gary E. Kopec, Mauricio Lomelin, "Supervised Template Estimation for Document Image Decoding", IEEE Transactions on Pattern Analysis & Machine Intelligence, vol.19, no. 12, pp. 1313-1324, December 1997, doi:10.1109/34.643891
23 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool