The Community for Technology Leaders
RSS Icon
Subscribe
Issue No.11 - November (1997 vol.19)
pp: 1289-1295
ABSTRACT
<p><b>Abstract</b>—We present a novel approach to reliable and efficient recovery of part-descriptions in terms of superquadric models from range data. We show that superquadrics can <it>directly</it> be recovered from unsegmented data, thus avoiding any presegmentation steps (e.g., in terms of surfaces). The approach is based on the <it>recover-and-select</it> paradigm [<ref rid="bibi128910" type="bib">10</ref>]. We present several experiments on real and synthetic range images, where we demonstrate the stability of the results with respect to viewpoint and noise.</p>
INDEX TERMS
Range image segmentation, recover-and-select paradigm, recovery of volumetric models, superquadrics.
CITATION
Ales Leonardis, Ales Jaklic, Franc Solina, "Superquadrics for Segmenting and Modeling Range Data", IEEE Transactions on Pattern Analysis & Machine Intelligence, vol.19, no. 11, pp. 1289-1295, November 1997, doi:10.1109/34.632988
20 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool