This Article 
   
 Share 
   
 Bibliographic References 
   
 Add to: 
 
Digg
Furl
Spurl
Blink
Simpy
Google
Del.icio.us
Y!MyWeb
 
 Search 
   
Discrete Voronoi Diagrams and the SKIZ Operator: A Dynamic Algorithm
October 1997 (vol. 19 no. 10)
pp. 1165-1170

Abstract—The Voronoi diagram (VD) is a popular tool for partitioning the support of an image. An algorithm is presented for constructing VD when the seed set, which determines the Voronoi regions, can be modified by adding and removing seeds. The number of pixels and seeds revisited for updating the diagram and the neighbor relationships among seeds is minimized. A result on cocircular seeds is presented. The adjacency, or dual, graph of the VD is readily obtained. The use of the algorithm for constructing skeletons by influence zones is demonstrated.

[1] N. Ahuja, B. An, and B. Schachter, "Image Representation Using Voronoi Tessellation," Computer Visualization, Graphics, and Image Processing, vol. 29, pp. 286-295, 1985.
[2] T. Asano, M. Edahiro, H. Imai, M. Iri, and K. Murota, "Practical Use of Bucketing Techniques in Computational Geometry," Computational Geometry, G. Toussaint, ed., pp. 153-195.Amsterdam: Elsevier Science, 1985.
[3] R. Aurenhammer, "Voronoi Diagrams—A Survey of a Fundamental Geometric Data Structure," ACM Computing Surveys, vol. 23, pp. 345-405, 1991.
[4] E. Bertin, "Digrammes de Voronoï2D et 3D: Applications en analyse d'images," Thèse de Doctorat, Univ. Joseph Fourier, Grenoble, France, 1994.
[5] E. Bertin, S. Marchand-Maillet, and J.M. Chassery, "Optimization in Voronoi Diagrams," Mathematical Morphology and Its Applications to Image Processing, J. Serra and P. Soille, eds., pp. 209-216.Dordrecht, The Netherlands: Kluwer Academic, 1994.
[6] J.-D. Boissonnat and M. Teillaud, "On the Randomized Construction of the Delaunay Tree," Technical Report 1140, INRIA, France, 1991.
[7] G. Borgefors, "Distance Transformations in Digital Images," Computer Visualization, Graphics, and Image Processing, vol. 34, pp. 344-371, 1986.
[8] H. Breu, J. Gil, D. Kirkpatrick, and M. Werman, “Linear time Euclidean Distance Transform Algorithms,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 17, pp. 529-533, 1995.
[9] J.M. Chassery and M. Melkemi, "Diagramme de Voronoïappliquéàla segmentation d'images etàla détection d'événements en imagerie multi-sources," Traitement du Signal, vol. 8, pp. 155-164, 1991.
[10] P.-E. Danielsson, "Euclidean Distance Mapping," Computer Graphics and Image Processing, vol. 14, pp. 227-248, 1980.
[11] O. Devillers, "Robust and Efficient Implementation of the Delaunay Tree," Technical Report 1619, INRIA, France, 1992.
[12] O. Devillers, S. Meiser, and M. Teillaud, "Fully Dynamic Delaunay Triangulation in Logarithmic Expected Time per Operation," Technical Report 1349, INRIA, France, 1991.
[13] T.-P. Fang and L.A. Piegl, "Delaunay Triangulation Using a Uniform Grid," IEEE Computer Graphics and Applications, pp. 36-47, 1993.
[14] A. Gersho and R.M. Gray, Vector Quantization and Signal Compression.Boston: Kluwer Academic, 1991.
[15] P.J. Green and R. Sibson, "Computing Dirichlet Tessellations in the Plane," Computer J., vol. 21, pp. 168-173, 1978.
[16] L. Guibas and J. Stolfi, "Primitives for the Manipulation of General Subdivisions and the Computation of Voronoi Diagrams," ACM Trans. Graphics, vol. 4, pp. 74-123, 1985.
[17] L. Guibas and J. Stolfi, "Ruler, Compass and Computer: The Design and Analysis of Geometric Algorithms," Theoretical Foundations of Computer Graphics and CAI, R.A. Earnshaw, ed., pp. 111-165.Berlin: Springer-Verlag, NATO ASI Series, vol. F40, 1988.
[18] L.J. Guibas, D.E. Knuth, and M. Sharir, "Randomized Incremental Construction of Delaunay and Voronoi Diagrams," Algorithmica, vol. 7, pp. 381-413, 1992.
[19] D.G. Luenberger, Optimization by Vector Space Methods.New York: Wiley, 1969.
[20] M. Melkemi, "Approches géométriques par modèles de Voronoïen segmentation d'images," Thèse de Doctorat, Univ. Joseph Fourier, Grenoble, France, 1992.
[21] O. Monga, "An Optimal Region Growing Algorithm for Image Segmentation," Int'l J. Pattern Recognition and Artificial Intelligence, vol. 1, pp. 351-375, 1987.
[22] R.L. Ogniewicz and O. Kübler, "Voronoi Tessellation of Points with Integer Coordinates: Time-Efficient Implementation and Online Edge-List Generation," Pattern Recognition, vol. 28, pp. 1,839-1,844, 1995.
[23] T. Ohya, M. Iri, and K. Murota, "A Fast Voronoi Diagram with Quaternary Tree Bucketing," Information Processing Letters, vol. 18, pp. 227-231, 1984.
[24] A. Okabe, B. Boots, and K. Sugihara, Spatial Tessellations: Concepts and Applications of Voronoi Diagrams.West Sussex, England: Wiley, 1992.
[25] F.P. Preparata and M.I. Shamos, Computational Geometry: An Introduction.New York: Springer-Verlag, 1985.
[26] R. Sibson, "A Brief Description of Natural Neighbour Interpolation," Interpreting Multivariate Data, V. Barnet, ed., pp. 21-36.Chichester, U.K.: Wiley, 1981.
[27] M. Tüceryan and A.K. Jain,“Texture segmentation using Voronoi polygons,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 12, no. 2, pp. 211-216, Feb. 1990.
[28] L. Vincent, "Graphs and Mathematical Morphology," Signal Processing, vol. 16, pp. 365-388, 1989.
[29] L. Vincent, "Exact Euclidean Distance Function by Chain Propagations," Proc. IEEE Conf. Computer Vision and Pattern Recognition, June 3-6, Maui, Haw., 1991.

Index Terms:
Incremental method, degenerate seed configuration, image segmentation, Euclidean distance function, point-location problem.
Citation:
Raúl E. Sequeira, Françoise J. Prêteux, "Discrete Voronoi Diagrams and the SKIZ Operator: A Dynamic Algorithm," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 19, no. 10, pp. 1165-1170, Oct. 1997, doi:10.1109/34.625128
Usage of this product signifies your acceptance of the Terms of Use.