The Community for Technology Leaders
RSS Icon
Subscribe
Issue No.04 - April (1997 vol.19)
pp: 380-393
ABSTRACT
<p><b>Abstract</b>—We present a technique for constructing random fields from a set of training samples. The learning paradigm builds increasingly complex fields by allowing potential functions, or features, that are supported by increasingly large subgraphs. Each feature has a weight that is trained by minimizing the Kullback-Leibler divergence between the model and the empirical distribution of the training data. A greedy algorithm determines how features are incrementally added to the field and an iterative scaling algorithm is used to estimate the optimal values of the weights. The random field models and techniques introduced in this paper differ from those common to much of the computer vision literature in that the underlying random fields are non-Markovian and have a large number of parameters that must be estimated. Relations to other learning approaches, including decision trees, are given. As a demonstration of the method, we describe its application to the problem of automatic word classification in natural language processing.</p>
INDEX TERMS
Random field, Kullback-Leibler divergence, iterative scaling, maximum entropy, EM algorithm, statistical learning, clustering, word morphology, natural language processing.
CITATION
Stephen Della Pietra, Vincent Della Pietra, John Lafferty, "Inducing Features of Random Fields", IEEE Transactions on Pattern Analysis & Machine Intelligence, vol.19, no. 4, pp. 380-393, April 1997, doi:10.1109/34.588021
18 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool