This Article 
 Bibliographic References 
 Add to: 
Kruppa's Equations Derived from the Fundamental Matrix
February 1997 (vol. 19 no. 2)
pp. 133-135

Abstract—The purpose of this note is to give a specific form for Kruppa's equations in terms of the Fundamental matrix. Kruppa's equations can be written explicitly in terms of the singular value decomposition (SVD) of the fundamental matrix.

[1] E. Kruppa, "Zur Ermittlung eines Objektes aus zwei Perspektiven mit innerer Orientierung," Sitz.-Ber. Akad. Wiss., Wien, math. naturw. Abt. IIa., vol. 122, pp. 1,939-1,948, 1913.
[2] S.J. Maybank and O.D. Faugeras, "A Theory of Self-Calibration of a Moving Camera," Int'l J. Computer Vision, vol. 8, no. 2, pp. 123 - 151, 1992.
[3] O.D. Faugeras, Q.-T Luong, and S.J. Maybank, "Camera Self-Calibration: Theory and Experiments," Computer Vision, Proc. ECCV '92, LNCS-Series, vol. 588, pp. 321-334, Springer-Verlag, 1992.
[4] Q.-T Luong, Matrice Fondamentale et Calibration Visuelle sur l'Environnement, PhD thesis, Universite de Paris-Sud, Centre D'Orsay, 1992.
[5] R.I. Hartley, "Euclidean Reconstruction From Uncalibrated Views," Applications of Invariance in Computer Vision-LNCS-Series vol. 825, pp. 237-256, Springer-Verlag, May 1994.
[6] J.G. Semple and G.T. Kneebone, Algebraic Projective Geometry.Oxford: Oxford University Press, 1952.
[7] G.H. Golub and C.F. Van Loan, Matrix Computations, second ed. Baltimore: The Johns Hopkins Univ. Press, 1989.
[8] W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling, Numerical Recipes in C: The Art of Scientific Computing. Cambridge University Press, 1988.
[9] T. Huang and O. Faugeras,“Some properties of the E matrix in two-view motion estimation,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 11, no. 12, pp. 1,310-1,312, Dec. 1989.
[10] R. Hartley, “Projective Reconstruction and Invariants from Multiple Images,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 16, no. 10, pp. 1036-1041, Oct. 1994.
[11] T. Moons, L. Van Gool, M. van Diest, and E. Pauwels, "Affine Reconstruction From Perspective Image Pairs Obtained by a Translating Camera, Applications of Invariance in Computer Vision—LNCS Series, vol. 825, pp. 297-316, May 1994. Springer-Verlag,

Index Terms:
Singular value decomposition, fundamental matrix, Kruppa's equations, camera calibration.
Richard I. Hartley, "Kruppa's Equations Derived from the Fundamental Matrix," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 19, no. 2, pp. 133-135, Feb. 1997, doi:10.1109/34.574792
Usage of this product signifies your acceptance of the Terms of Use.