This Article 
   
 Share 
   
 Bibliographic References 
   
 Add to: 
 
Digg
Furl
Spurl
Blink
Simpy
Google
Del.icio.us
Y!MyWeb
 
 Search 
   
Kruppa's Equations Derived from the Fundamental Matrix
February 1997 (vol. 19 no. 2)
pp. 133-135

Abstract—The purpose of this note is to give a specific form for Kruppa's equations in terms of the Fundamental matrix. Kruppa's equations can be written explicitly in terms of the singular value decomposition (SVD) of the fundamental matrix.

[1] E. Kruppa, "Zur Ermittlung eines Objektes aus zwei Perspektiven mit innerer Orientierung," Sitz.-Ber. Akad. Wiss., Wien, math. naturw. Abt. IIa., vol. 122, pp. 1,939-1,948, 1913.
[2] S.J. Maybank and O.D. Faugeras, "A Theory of Self-Calibration of a Moving Camera," Int'l J. Computer Vision, vol. 8, no. 2, pp. 123 - 151, 1992.
[3] O.D. Faugeras, Q.-T Luong, and S.J. Maybank, "Camera Self-Calibration: Theory and Experiments," Computer Vision, Proc. ECCV '92, LNCS-Series, vol. 588, pp. 321-334, Springer-Verlag, 1992.
[4] Q.-T Luong, Matrice Fondamentale et Calibration Visuelle sur l'Environnement, PhD thesis, Universite de Paris-Sud, Centre D'Orsay, 1992.
[5] R.I. Hartley, "Euclidean Reconstruction From Uncalibrated Views," Applications of Invariance in Computer Vision-LNCS-Series vol. 825, pp. 237-256, Springer-Verlag, May 1994.
[6] J.G. Semple and G.T. Kneebone, Algebraic Projective Geometry.Oxford: Oxford University Press, 1952.
[7] G.H. Golub and C.F. Van Loan, Matrix Computations, second ed. Baltimore: The Johns Hopkins Univ. Press, 1989.
[8] W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling, Numerical Recipes in C: The Art of Scientific Computing. Cambridge University Press, 1988.
[9] T. Huang and O. Faugeras,“Some properties of the E matrix in two-view motion estimation,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 11, no. 12, pp. 1,310-1,312, Dec. 1989.
[10] R. Hartley, “Projective Reconstruction and Invariants from Multiple Images,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 16, no. 10, pp. 1036-1041, Oct. 1994.
[11] T. Moons, L. Van Gool, M. van Diest, and E. Pauwels, "Affine Reconstruction From Perspective Image Pairs Obtained by a Translating Camera, Applications of Invariance in Computer Vision—LNCS Series, vol. 825, pp. 297-316, May 1994. Springer-Verlag,

Index Terms:
Singular value decomposition, fundamental matrix, Kruppa's equations, camera calibration.
Citation:
Richard I. Hartley, "Kruppa's Equations Derived from the Fundamental Matrix," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 19, no. 2, pp. 133-135, Feb. 1997, doi:10.1109/34.574792
Usage of this product signifies your acceptance of the Terms of Use.