The Community for Technology Leaders
RSS Icon
Subscribe
Issue No.05 - May (1996 vol.18)
pp: 567-570
ABSTRACT
<p><b>Abstract</b>—This correspondence introduces the <it>weighted-Parzen-window</it> classifier. The proposed technique uses a clustering procedure to find a set of reference vectors and weights which are used to approximate the <it>Parzen-window</it> (<it>kernel-estimator</it>) classifier. The weighted-Parzen-window classifier requires less computation and storage than the full Parzen-window classifier. Experimental results showed that significant savings could be achieved with only minimal, if any, error rate degradation for synthetic and real data sets.</p>
INDEX TERMS
Nonparametric classifiers, Parzen-windows, kernel estimator, clustering, training samples, discriminant analysis, Bayes error, leave-one-out, holdout.
CITATION
Gregory A. Babich, Octavia I. Camps, "Weighted Parzen Windows for Pattern Classification", IEEE Transactions on Pattern Analysis & Machine Intelligence, vol.18, no. 5, pp. 567-570, May 1996, doi:10.1109/34.494647
20 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool