
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
Hagit Zabrodsky, Shmuel Peleg, David Avnir, "Symmetry as a Continuous Feature," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 17, no. 12, pp. 11541166, December, 1995.  
BibTex  x  
@article{ 10.1109/34.476508, author = {Hagit Zabrodsky and Shmuel Peleg and David Avnir}, title = {Symmetry as a Continuous Feature}, journal ={IEEE Transactions on Pattern Analysis and Machine Intelligence}, volume = {17}, number = {12}, issn = {01628828}, year = {1995}, pages = {11541166}, doi = {http://doi.ieeecomputersociety.org/10.1109/34.476508}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Pattern Analysis and Machine Intelligence TI  Symmetry as a Continuous Feature IS  12 SN  01628828 SP1154 EP1166 EPD  11541166 A1  Hagit Zabrodsky, A1  Shmuel Peleg, A1  David Avnir, PY  1995 KW  Symmetry KW  local symmetry KW  symmetry distance KW  similarity measure KW  occlusion KW  fuzzy shapes KW  face orientation. VL  17 JA  IEEE Transactions on Pattern Analysis and Machine Intelligence ER   
[1] H. Alt,K. Mehlhorn,H. Wagener,, and E. Welzl,“Congruence, similarity, and symmetries of geometric objects,” ACM J. Computing, vol. 4, pp. 308315, 1987.
[2] J.L. Amoros,M.J. Buerger,, and M. Canut de Amoros,The Laue Method.New York: Academic Press, 1975.
[3] M. Atallah,“On symmetry detection,” IEEE Trans. Computers, vol. 34, no. 7, pp. 663666, 1985.
[4] F. Attneave,“Symmetry information and memory for patterns,” Am. J. Psychology, vol. 68, pp. 209222, 1955
[5] D. Avnir and A.Y. Meyer,“Quantifying the degree of molecular shapedeformation. A chirality measure,” J. Molecular Structure (Theochem), vol. 94, pp. 211222, 1991.
[6] J. Bigün,“Recognition of local symmetries in gray value images by harmonicfunctions,” Proc. Int’l Conf. Pattern Recognition, pp. 345347, 1988.
[7] A. Blake,M. Taylor,, and A. Cox,“Grasping visual symmetry,” Proc. Int’l Conf. Pattern Recognition,Berlin, pp. 724733, May 1993.
[8] H. Blum and R.N. Nagel,“Shape description using weighted symmetric axisfeatures,” Pattern Recognition, vol. 10, pp. 167180, 1978.
[9] Y. Bonneh,D. Reisfeld,, and Y. Yeshurun,“Texture discrimination by localgeneralized symmetry,” Proc. Int’l Conf. Pattern Recognition, pp. 461465,Berlin, May, 1993.
[10] M. Brady and H. Asada,“Smoothed local symmetries and theirimplementation,” Int’l J. Robotics Research, vol. 3, no. 3, pp. 3661, 1984.
[11] P.J. Burt and E.H. Adelson, “The Laplacian Pyramid as a Compact Image Code,” IEEE Trans. Comm., vol. 31, no. 4, pp. 532540, 1983.
[12] M.H. DeGroot,“Probability and statistics.”Reading, Mass.: AddisonWesley, 1975.
[13] G. Gilat,“Chiral coefficient(A measure of the amount of structuralchirality,” J. Phys. A: Math. Gen., vol. 22, p. 545, 1989.
[14] A.D. Gross and T.E. Boult,“Analyzing skewed symmetry,” Int’l J. Computer Vision, vol. 13, no. 1, pp. 91111, 1994.
[15] B. Grünbaum,“Measures of symmetry for convex sets,” Proc. Symp. Pure Math:Am. Mathematical Soc., vol. 7, pp. 233270, 1963.
[16] Y. HelOr,S. Peleg.,, and D. Avnir,“Characterization of right handed andleft handed shapes,” Computer Vision, Graphics, and Image Processing, vol. 53, no. 2, 1991.
[17] M.K. Hu, “Pattern Recognition by Moment Invariants,” Proc. IRE Trans. Information Theory, vol. 8, pp. 179187, 1962.
[18] T. Kanade,“Recovery of the threedimensional shape of an object from asingle view,” Artificial Intelligence, vol. 17, pp. 409460, 1981.
[19] M. Kass,A. Witkin,, and D. Terzopoulos,“Snakes: Active contour models,” Int’l J. Computer Vision, vol. 1, pp. 322332, 1988.
[20] M. Kirby and L. Sirovich,“Application of KarhunenLoève procedure for the characterization of human faces,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 12, no. 1, pp. 103108, Jan. 1990.
[21] M. Leyton,Symmetry, Causality, Mind.Cambridge, Mass.: MIT Press, 1992.
[22] G. Marola, "On the Detection of the Axes of Symmetry of Symmetric and Almost Symmetric Planar Images," IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 11, pp. 104108, 1989.
[23] W. Miller,Symmetry Groups And Their Applications.”London: Academic Press, 1972.
[24] H. Mitsumoto,S. Tamura,K. Okazaki,N. Kajimi,, and Y. Fukui,“3D reconstruction using mirror images based on a plane symmetry recoveringmethod,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 14, no. 9, pp. 941946, 1992.
[25] F. Mokhtarian and A.K. Mackworth, “A Theory of Multiscale, CurvatureBased Shape Representation for Planar Curves,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 14, no. 8, pp. 789805, Aug. 1992.
[26] V.S. Nalwa, “LineDrawing Interpretation: Bilateral Symmetry,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 11, no. 10, pp. 11171120, Oct. 1989.
[27] W.G. Oh,M. Asada,, and S. Tsuji, “Modelbased matching using skewed symmetryinformation,” Proc. Int’l Conf. Pattern Recognition, pp. 1,0431,045, 1988.
[28] J. Ponce,“On characterizing ribbons and finding skewed symmetries,” Computer Vision, Graphics, and Image Processing, vol. 52, pp. 328340, 1990.
[29] D. Reisfeld,H. Wolfson,, and Y. Yeshurun, “Robust detection of facialfeatures by generalized symmetry,” Proc. Int’l Conf. Pattern Recognition,Champaign, Ill., pp. 117120, June 1992.
[30] H. Samet,“The quadtree and related hierarchical data structures,” ACM Computing Surveys, vol. 16, no. 2, pp. 187260, June 1984.
[31] D. Terzopoulos,A. Witkin,, and M. Kass, “Symmetry seeking models and objectreconstruction,” Int’l J. Computer Vision, vol. 1, pp. 211221, 1987.
[32] H. Weyl,Symmetry.Princeton, N.J.: Princeton Univ. Press, 1952.
[33] E. Yodogawa,“Symmetropy, An entropylike measure of visual symmetry,” Perception and Psychophysics, vol. 32, no. 3, pp. 230240, 1982.
[34] H. Zabrodsky,“Computational aspects of pattern characterization—Continuoussymmetry,” PhD thesis, Hebrew Univ., Jerusalem, Israel, 1993.
[35] H. Zabrodsky and D. Avnir,“Continuous symmetry measures, IV: Chirality,” J. Am. Chemical Soc., vol. 117, pp. 462473, 1995.
[36] H. Zabrodsky and S. Peleg,“Attentive transmission,” J. Visual Comm. and Image Representation, vol. 1, no. 2, pp. 189198, Nov. 1990.
[37] H. Zabrodsky,S. Peleg,, and D. Avnir,“Continuous symmetry measures II:Symmetry groups and the tetrahedron,” J. Am. Chemical Soc., vol. 115, pp. 8,2788,298, 1993.
[38] H. Zabrodsky,S. Peleg,, and D. Avnir,“Symmetry of fuzzy data,” Proc. Int’l Conf. Pattern Recognition,TelAviv, Israel, pp. 499504, Oct. 1994.
[39] H. Zabrodsky and D. Weinshall,“3D symmetry from 2D data,” Proc. European Conf. Computer Vision,Stockholm, Sweden, May 1994.