This Article 
 Bibliographic References 
 Add to: 
Bar Code Waveform Recognition Using Peak Locations
June 1994 (vol. 16 no. 6)
pp. 630-640

Traditionally, zero crossings of the second derivative provide edge features for the classification of blurred waveforms. The accuracy of these edge features deteriorates in the case of severely blurred images. In this paper, a new feature is presented that is more resistant to the blurring process, the image, and waveform peaks. In addition, an estimate of the standard deviation /spl sigma/ of the blurring kernel is used to perform minor deblurring of the waveform. Statistical pattern recognition is used to classify the peaks as bar code characters. The noise tolerance of this recognition algorithm is increased by using an adaptive, histogram-based technique to remove the noise. In a bar code environment that requires a misclassification rate of less than one in a million, the recognition algorithm showed a 43% performance improvement over current commercial bar code reading equipment.

[1] T. Pavlidis, J. Swartz, and Y. P. Wang, "Fundamentals of bar code information theory,"IEEE Computer, pp. 74-86, Apr. 1990.
[2] V. Torre and T. A. Poggio, "On edge detection,"IEEE Trans. Pattern Anal. Machine Intell., vol. PAMI-8, pp. 147-163, Mar. 1986.
[3] J. S. Chen and G. Medioni, "Detection, localization and estimation of edges,"IEEE Trans. Pattern. Anal. Machine Intell., vol. 11, pp. 191-198, 1989.
[4] R. J. Watt and M. J. Morgan, "The recognition and representation of edge blur: Evidence for spatial primitives in human vision,"Vis. Res., vol. 23, pp. 1465-1477, 1983.
[5] D. C. Burr, M. C. Morrone, and D. Spinelli, "Evidence of edge and bar detectors in human vision,"Vis. Res., vol. 29, pp. 419-431, 1989.
[6] T. Pavlidis, "Algorithms for shape analysis of contours and waveforms,"IEEE Trans. Pattern. Anal. Machine Intell.. vol. 2, pp. 301-312, 1980.
[7] M. Concetta, M. C. Morrone, and D. C. Burr, "Feature detection in human vision: A phase-dependent energy model,"Proc. Roy. Soc. London B, vol. 235, pp. 221-245, 1988.
[8] M. C. Morrone and R. A. Owens, "Feature detection from local energy,Patt. Recog. Lett., vol. 6, pp. 303-313, 1987.
[9] G. Zalman and J. Shamir, "Maximum discrimination filter,"J. Opt. Soc. Amer. A, vol. 8, pp. 814-821, 1991.
[10] R. W. Enrich and J. P. Foith, "Representation of random waveforms by relational trees,"IEEE Trans. Comput., vol. C-25, pp. 725-736, 1976.
[11] Y. Cheng and S. Lu, "Waveform correlation by tree matching,"IEEE Trans. Pattern Anal. Machine Intell., pp. 299-305, 1985.
[12] R. deFigueiredo and S. W. Shaw, "Structural processing of waveforms as trees,"IEEE Trans. Acoust., Speech, Signal Processing, vol. 38, pp. 328-338, 1990.
[13] S. L. Horowitz, "A general peak detection algorithm with applications in the computer analysis of electrocardiograms,"CACM, vol. 18, pp. 281-285, 1975.
[14] E. Joseph and T. Pavlidis, "Waveform recognition with applications to bar codes," inProc. IEEE SMC 1991 Conf., 1991, pp. 129-134.
[15] T. P. Wang, A. H. Vagnucci, and C. C. Li, "Peak detection of the plasma cortisol time series by syntactic pattern recognition," inProc. IEEE SMC 1991 Conf., 1991, pp. 135-140.
[16] E. Joseph, "Recognition and restoration of blurred bilevel waveforms," Ph.D. dissertation, Comput. Sci. Dep., State Univ. New York, Stony Brook, NY, 1992.
[17] A. Yuille and T. Poggio, "Scaling theorems for zero crossings,"IEEE Trans. Pattern Anal. Machine Intell., vol. PAMI-8, no. 1, pp. 15-25, 1986.
[18] J. Babaud, A. P. Witkin, M. Baudin, and R. O. Duda, "Uniqueness of the Gaussian kernel for scale-space filtering,"IEEE Trans. Pattern Anal. Machine Intell., vol. PAMI-8, pp. 26-33, Jan. 1986.
[19] A. Rosenfeld and A. Kak,Digital Picture Processing, New York: Academic, 1976.
[20] J. Biemond, R. L. Lagendijk, and R. M. Mersereau, "Iterative methods for image deblurring,"Proc. IEEE, vol. 78, pp. 856-883, 1990.
[21] R. A. Hummel, B. Kimia, and S. W. Zucker, "Deblurring gaussian blur,"Comput. Vision Graphics Image Processing, vol. 38, pp. 66-80, 1987.
[22] A. Papoulis,Probability Random Variables, and Stochastic Processes. New York: McGraw-Hill, 1984.

Index Terms:
bar codes; edge detection; parameter estimation; statistical analysis; bar code waveform recognition; peak locations; zero crossings; blurred waveforms; edge features; blurring process; waveform peaks; waveform deblurring; statistical pattern recognition; noise tolerance; histogram
E. Joseph, T. Pavlidis, "Bar Code Waveform Recognition Using Peak Locations," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 16, no. 6, pp. 630-640, June 1994, doi:10.1109/34.295907
Usage of this product signifies your acceptance of the Terms of Use.