This Article 
   
 Share 
   
 Bibliographic References 
   
 Add to: 
 
Digg
Furl
Spurl
Blink
Simpy
Google
Del.icio.us
Y!MyWeb
 
 Search 
   
Analysis of 3-D Rotation Fitting
May 1994 (vol. 16 no. 5)
pp. 543-549

Computational techniques for fitting a 3-D rotation to 3-D data are recapitulated in a refined form as minimization over proper rotations, extending three existing methods-the method of singular value decomposition, the method of polar decomposition, and the method of quaternion representation. Then, we describe the problem of 3-D motion estimation in this new light. Finally, we define the covariance matrix of a rotation and analyze the statistical behavior of errors in 3-D rotation fitting.

[1] K. S. Arun, T. S. Huang, and S. D. Blostein, "Least-squares fitting of two 3-D point sets,"IEEE Trans. Pattern Anal. Machine Intell., vol. PAMI-9, no. 5, pp. 698-700, 1987.
[2] B. K. P. Horn, "Closed-form solution of absolute orientation using unit quaternions,"J. Opt. Soc. Amer., vol. A-4, pp. 629-642, 1987.
[3] B. K. P. Horn, H. M. Hilden, and S. Negahdaripour, "Closed-form solution of absolute orientation using orthonormal matrices,"J. Opt. Soc. Amer., vol. A-5, pp. 1128-1135, 1988.
[4] T. S. Huang and O. D. Faugeras, "Some properties of theEmatrix in two-view motion estimation,"IEEE Trans. Pattern Anal. Machine Intell., vol. 11, pp. 1310-1312, 1989.
[5] K. Kanatani, Group Theoretical Methods in Image Understanding, New York: Springer, 1990.
[6] K. Kanatani, "Computational projective geometry,"CVGIP: Image Understanding, vol. 54, pp. 333-448, 1991.
[7] K. Kanatani, "Unbiased estimation and statistical analysis of 3-D rigid motion from two views,"IEEE Trans. Pattern Anal. Machine Intell., vol. 15, pp. 37-50, 1993.
[8] K. Kanatani, "Statistical analysis of geometric computation,"Comput. Vision, Graphics, Image Processing: Image Understanding, vol. 59, no. 3, 1994.
[9] K. Kanatani,Geometric Computation for Machine Vision. Oxford: Oxford Univ. Press, 1993.
[10] H. C. Longuet-Higgins, "A computer algorithm for reconstructing a scene from two projections,"Nature, vol. 293, no. 10, pp. 133-135, 1981.
[11] H. C. Longuet-Higgins, "Multiple interpretations of a pair of images of a surface,"Proc. Roy. Soc. London, vol. A-418, pp. 1-15, 1988.
[12] R. Y. Tsai and T. S. Huang, "Uniqueness and estimation of three-dimensional motion parameters of rigid objects with curved surfaces,"IEEE Trans. Pattern Anal. Machine Intell., vol. 6, pp. 13-27, 1984.
[13] S. Umeyama, "Least-squares estimation of transformation parameters between two point patterns,"IEEE Trans. Pattern Anal. Machine Intell., vol. 13, pp. 376-380, 1991.
[14] J. Weng, T. S. Huang, and N. Ahuja, "Motion and structure from two perspective views: Algorithms, error analysis, and error estimation,"IEEE Trans. Pattern Anal. Machine Intell., vol. 11, pp. 451-467, 1989.

Index Terms:
image processing; minimisation; motion estimation; matrix algebra; error statistics; 3-D rotation fitting; minimization; proper rotations; singular value decomposition; polar decomposition; quaternion representation; covariance matrix; statistical behavior
Citation:
K. Kanatani, "Analysis of 3-D Rotation Fitting," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 16, no. 5, pp. 543-549, May 1994, doi:10.1109/34.291441
Usage of this product signifies your acceptance of the Terms of Use.